

Chromium Next GEM Automated Single Cell 5' Reagent Kits v2

FOR USE WITH

Chromium Next GEM Automated Single Cell 5' Kit v2, 24 rxns PN-1000290

Chromium Next GEM Automated Single Cell 5' Kit v2, 4 rxns PN-1000298

Chromium Automated Single Cell Human TCR Amplification & Library Construction Kit, 24 rxns PN-1000300

Chromium Automated Single Cell Mouse TCR Amplification & Library Construction Kit, 24 rxns PN-1000310

Chromium Automated Single Cell Human BCR Amplification & Library Construction Kit, 24 rxns PN-1000305

Chromium Automated Single Cell Mouse BCR Amplification & Library Construction Kit, 24 rxns PN-1000311

Chromium Next GEM Chip K Automated Single Cell Kit, 48 rxns PN-1000289

Chromium Next GEM Chip K Automated Single Cell Kit, 16 rxns PN-1000297

Dual Index Kit TT Set A, 96 rxns PN-1000215

Notices

Document Number

CG000384 • Rev D

Legal Notices

© 2023 10x Genomics, Inc. (10x Genomics). All rights reserved. Duplication and/or reproduction of all or any portion of this document without the express written consent of 10x Genomics, is strictly forbidden. Nothing contained herein shall constitute any warranty, express or implied, as to the performance of any products described herein. Any and all warranties applicable to any products are set forth in the applicable terms and conditions of sale accompanying the purchase of such product. 10x Genomics provides no warranty and hereby disclaims any and all warranties as to the use of any third-party products or protocols described herein. The use of products described herein is subject to certain restrictions as set forth in the applicable terms and conditions of sale accompanying the purchase of such product. A non-exhaustive list of 10x Genomics' marks, many of which are registered in the United States and other countries can be viewed at: www.10xgenomics.com/trademarks. 10x Genomics may refer to the products or services offered by other companies by their brand name or company name solely for clarity, and does not claim any rights in those third party marks or names. 10x Genomics products may be covered by one or more of the patents as indicated at: www.10xgenomics.com/patents. The use of products described herein is subject to 10x Genomics Terms and Conditions of Sale, available at www.10xgenomics.com/legal-notices, or such other terms that have been agreed to in writing between 10x Genomics and user. All products and services described herein are intended FOR RESEARCH USE ONLY and NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Instrument & Licensed Software Updates Warranties

Updates to existing Instruments and Licensed Software may be required to enable customers to use new or existing products. In the event of an Instrument failure resulting from an update, such failed Instrument will be replaced or repaired in accordance with the 10x Limited Warranty, Assurance Plan or service agreement, only if such Instrument is covered by any of the foregoing at the time of such failure. Instruments not covered under a current 10x Limited Warranty, Assurance Plan or service agreement will not be replaced or repaired.

Support

Email: support@10xgenomics.com

10x Genomics

6230 Stoneridge Mall Road

Pleasanton, CA 94588 USA

Document Revision Summary

Document Number CG000384

Title Chromium Next GEM Automated Single Cell 5' Reagent Kits v2 User

Guide

Revision Rev C to Rev D

Revision Date May 2023

Specific Changes:

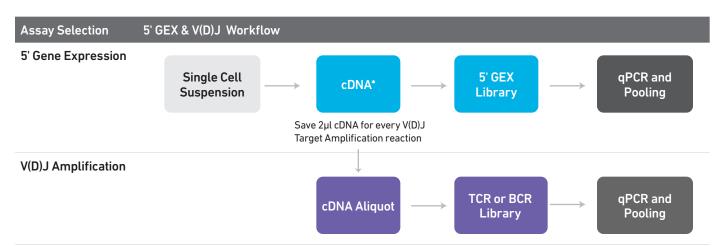
Updated to include information regarding two different sample input volumes (pages 25, 31-34, 40-42). Includes an updated Cell Suspension Volume Calculator table for 10 μ l input volume and an additional table for 32 μ l input volume.

Updated Dynabead resuspension instructions (pages 23, 37).

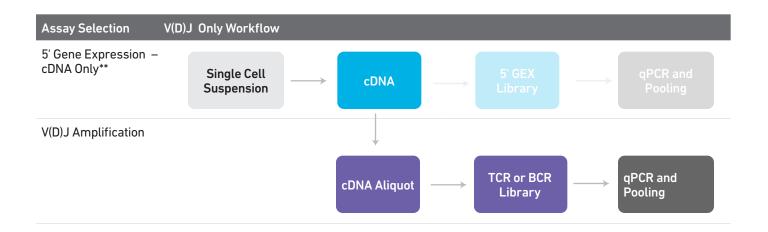
General Changes:

Updated for general minor consistency of language and terms throughout.

Table of Contents


Notices	2
Document Revision Summary	3
Introduction	6
Chromium Automated Single Cell 5' Workflows	7
Additional Kits, Reagents & Equipment	8
Recommended Thermal Cyclers	9
Recommended Real Time qPCR System	9
Protocol Steps & Timing	10
Stepwise Objectives	11
Chromium Next GEM Automated Single Cell 5' Reagent Kits v2	15
Chromium Next GEM Automated 5' Quick Planner Card	23
Tips & Best Practices	24
Consumables	25
Cell Concentration	25
Cell Preparation	25
Reagent Handling	26
Chromium Automated Chip Handling	26
Chromium Connect	27
Instrument Orientation	28
Deck Orientation	29
CSV Setup	31
Sample Input Files	32
Sample Input Template Files	33
Uploading Sample Information Using a Template File	34
Items & Reagents_cDNA Amplification & 5' GEX Library Cor	struction 35
Gather Items & Reagents	36
Thaw & Prep Reagents	37
Sample Preparation Guidelines	39
Sample Preparation Guidelines	40
10 μl Sample Input – Cell Suspension Volume Calculator Table	41
32 ul Sample Innut – Cell Suspension Volume Calculator Table	/,2

Carrier Loading Guidelines	43
Carrier Loading Guidelines	44
Additional Protocol Guidelines	46
Confirm GEM Generation	47
cDNA Amplification Cycle Number	47
cDNA QC & Quantification	48
5' Gene Expression (GEX) Library Construction Guidelines	49
Sample Index PCR	50
Post Library Construction QC	50
V(D)J Amplification & Library Construction Guidelines	51
Deck Orientation – V(D)J Amplification & Library Construction	52
Gather Items & Reagents for V(D)J Amplification and Library Construction	54
Thaw & Prep Reagents for V(D)J Amplification & Library Construction	55
V(D)J Amplification QC & Quantification	56
V(D)J Library Construction QC	57
Post Library Construction Quantification & Pooling	58
Deck Orientation – Library Quantification	59
Gather Items & Reagents	60
Post Library Construction Quantification	61
Deck Orientation – Library Pooling	63
Gather Items & Reagents	64
Library Pooling	64
Sequencing	65
Sequencing Libraries	66
Illumina Sequencer Compatibility	66
Sample Indices	66
Library Sequencing Depth & Run Parameters	67
Library Loading	67
Library Pooling	67
Appendix	68
LabChip Traces	69
Oligonucleotide Sequences	70


Introduction

Chromium Automated Single Cell 5' Workflow
Additional Kits, Reagents & Equipment
Recommended Thermal Cyclers
Recommended Real Time qPCR System
Protocol Steps & Timing
Stepwise Objectives
Next GEM Automated Single Cell 5' Reagent Kits v2
Next GEM Automated Single Cell 5' Quick Planner Card

Chromium Automated Single Cell 5' Workflows

*For Automated Gene Expression flexible workflow with cDNA storage option, refer to Chromium Next GEM Single Cell 5' cDNA Kit v2 User Guide Supplement (CG000473) and Automated Library Construction User Guide (CG000474).

^{**}Unused 5' gene expression library construction reagents will be lost, if the 5' Gene Expression – cDNA Only assay is selected. A more suitable option in this case would be to use the Chromium Next GEM Single Cell 5' cDNA Kit (PN-1000425) for cDNA generation.

Additional Kits, Reagents & Equipment

The items in the table below have been tested by 10x Genomics and are required for the Chromium Connect Automated Single Cell 5' protocol. DO NOT substitute any of the listed materials.

Supplier	Description	Part Number (US)
Plastics		
Hamilton	CO-RE/CO-RE II Tips 50 µl Filtered Tips CO-RE/CO-RE II Tips 300 µl Filtered Tips 60 ml Reagent Reservoir Self-Standing Hamilton PCR ComfortLid	235948 235903 194051 814300
Eppendorf	96-well Full Skirted Plate 96-well Semi Skirted Plate (Blue color listed; other colors are acceptable)	951020460 951020362
Thermo Fisher Scientific	MicroAmp 8-Tube Strip, 0.2 ml MicroAmp 8-Cap Strip, clear	N8010580 4323032
Kits & Reagents		
Thermo Fisher Scientific	Nuclease-free Water	AM9937
Millipore Sigma	Ethanol, Pure (200 Proof, anhydrous)	E7023-500ML
Qiagen	Qiagen Buffer EB	19086
Equipment		
10x Genomics	10x Vortex Adapter Benchtop Vortex Benchtop Centrifuge Plate Centrifuge Benchtop Thermal Cycler	330002 - - - -
Additional materials ONLY fo	r optional assays – qPCR and pooling	
Bio-Rad	10% Tween 20 96-well PCR Plates	1662404 HSP9665
Thermo Fisher Scientific	2 ml-Screw-cap Tubes, NonKnurl 0.5 ml-Screw-cap Tubes, NonKnurl	3488NK 3472NK
KAPA Biosystems	KAPA Library Quantification Kit for Illumina Platforms	KK4824
Qiagen	Qiagen Buffer EB	19086
Additional materials for Chromium Connect maintenance Use only indicated cleaning agents. DO NOT use bleach or organic oxidizers.		
Thor Labs	Lens tissues	MC-5
VWR	Microcide SQ Broad Spectrum Disinfectant	25099
Contec	70% Isopropanol (alternative to VWR disinfectant))	SB167030IR

Additional Kits, Reagents & Equipment

Supplier	Description	Part Number (US)
Quantification & Quality Co	ntrol	
Agilent	2100 Bioanalyzer Laptop Bundle (discontinued) (Replacement 2100 Bioanalyzer Instrument/ 2100 Expert Laptop Bundle	G2943CA G2939BA/G2953CA
Choose Bioanalyzer, TapeStation, LabChip, or Qubit based on availability & preference.	High Sensitivity DNA Kit 4200 TapeStation High Sensitivity D1000 ScreenTape/Reagents High Sensitivity D5000 ScreenTape/Reagents	5067-4626 G2991AA 5067-5592/ 5067-5593 5067-5584/ 5067-5585
Thermo Fisher Scientific	Qubit 4.0 Fluorometer Qubit dsDNA HS Assay Kit	Q33238 Q32854
PerkinElmer	LabChip GX Touch HT Nucleic Acid Analyzer DNA High Sensitivity Reagent Kit	CLS137031 CLS760672

Recommended Thermal Cyclers

Thermal cyclers for off-deck use.

Supplier	Description	Part Number
Bio-Rad	C1000 Touch Thermal Cycler with 96-Deep Well Reaction Module	1851197
Eppendorf	MasterCycler Pro (discontinued)	North America 950030010 International 6321 000.019
Thermo Fisher Scientific	Veriti 96-Well Thermal Cycler	4375786

Recommended Real Time qPCR System

Supplier	Description	Part Number
Bio-Rad	CFX96 Real-time System	1855096

The qPCR system should be compatible with Bio-Rad 96-well PCR Plates, P/N HSP9665 and with the KAPA Library Quantification Kit dye. Refer to manufacturer's recommendation.

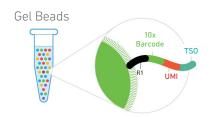
Protocol Steps & Timing

		Steps	Timing
	MANUAL	Cell Preparation (Dependent on Cell Type) Gather & Load Reagents and Consumables	~1-1.5 h ~60 min
3 h		Master Mix Preparation Chromium Automated Controller Loading GEM Generation	
6 h	AUTOMATED	OPTIONAL Confirm GEM Generation (Manual, 5 min) ~45 min after starting POST GEM KI-Cleanup – Dynapead cDNA Amplification cDNA Cleanup – SPRIselect	~3.5 h Walk-away time
	MANUAL	cDNA QC & Quantification	~60 min
9 h	AUTOMATED	5' Gene Expression Library Construction Fragmentation, End Repair & A-tailing Post Fragmentation, End Repair & A-tailing Double Sided Size Selection — SPRIselect Adaptor Ligation Post Ligation Cleanup — SPRIselect Sample Index PCR Post Sample Index PCR Double Sided Size Selection — SPRIselect	~4.5 h Walk-away time
	MANUAL	Post Library Construction QC	~60 min
	MANUAL	V(D)J Amplification & Library Construction Gather & Load Reagents and Consumables	~45 min
12 h plus	AUTOMATED	V(D)J Amplification 1 V(D)J Amplification 1 Double Sided Size Selection – SPRIselect V(D)J Amplification 2 V(D)J Amplification 2 Double Sided Size Selection – SPRIselect	~3.5 h Walk-away time
P	MANUAL	V(D)J Amplification QC & Quantification	~60 min
	AUTOMATED	Fragmentation, End Repair & A-tailing Adaptor Ligation Post Ligation Cleanup – SPRIselect Sample Index PCR Post Sample Index PCR Cleanup – SPRIselect	~4.5 h Walk-away time
	MANUAL	Post Library Construction QC	~60 min

OPTIONAL

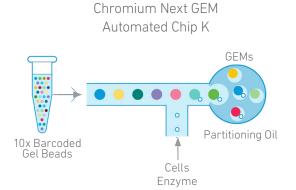
Library Quantification qPCR & Library Pooling

Stepwise Objectives

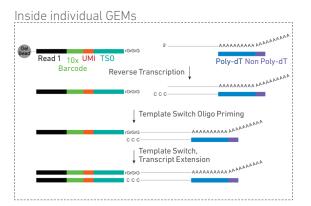

Chromium Connect automates the preparation of sequencing-ready, single cell libraries from input samples with walk-away convenience. Generation of Chromium Single Cell 5' Gene Expression and V(D)J libraries on the Chromium Connect instrument includes automated Gel Beads-in-emulsion (GEM) generation, barcoding, and library preparation from single cell suspensions, along with additional functionalities for library quantification and pooling.

The Chromium Connect platform for 5' digital gene expression profiles 500-10,000 individual cells per sample. A pool of ~750,000 10x Barcodes is sampled separately to index each cell's transcriptome. It is done by partitioning thousands of cells into nanoliter-scale GEMs, where all generated cDNA share a common 10x Barcode. Libraries are generated and sequenced from the cDNA and 10x Barcodes are used to associate individual reads back to the individual partitions.

This document outlines the key automated protocol steps for generating Single Cell 5' Gene Expression and V(D)J libraries.

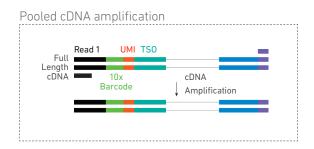

Single Cell 5' Gel Beads

The Single Cell VDJ 5' Gel Beads primer enables the production of barcoded, full-length cDNA from poly-adenylated mRNA, for generating Single Cell 5' Gene Expression and V(D)J libraries.


Automated GEM Generation & Barcoding

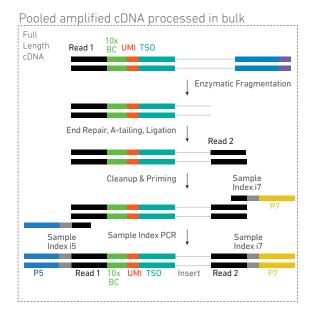
Automated GEM generation is done by combining barcoded Single Cell VDJ 5' Gel Beads, a Master Mix containing cells and enzymes, and Partitioning Oil onto Chromium Next GEM Automated Chip K. To achieve single cell resolution, cells are delivered at a limiting dilution, such that the majority (~90-99%) of generated GEMs contain no cell, while the remainder largely contain a single cell.

Automated GEM Generation & Barcoding

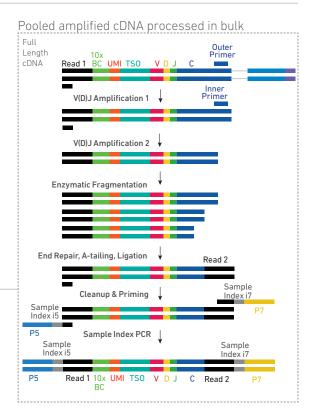

Immediately following GEM generation, the Gel Bead is dissolved and any co-partitioned cell is lysed. Oligonucleotides containing (i) an Illumina R1 sequence (read 1 sequencing primer), (ii) a 16 nt 10x Barcode, (iii) a 10 nt unique molecular identifier (UMI), and (iv) 13 nt template switch oligo (TSO) are released and mixed with the cell lysate and a Master Mix containing reverse transcription (RT) reagents and poly(dT) RT primers. Incubation of the GEMs produces 10x Barcoded, full-length cDNA from polyadenylated mRNA.

Automated Post GEM-RT Cleanup & cDNA Amplification

GEMs are broken and pooled after GEM-RT reaction mixtures are recovered. Silane magnetic beads are used to purify the 10x Barcoded first-strand cDNA from the post GEM-RT reaction mixture, which includes leftover biochemical reagents and primers.


10x Barcoded, full-length cDNA is amplified via PCR with primers against common 5' and 3' ends added during GEM-RT. Amplification generates sufficient material to construct multiple libraries from the same cells, e.g. both T cell and/or B cell libraries and 5' Gene Expression libraries.

If 5' Gene Expression libraries are not desired, stop the automated protocol after cDNA amplification and proceed directly to V(D)J amplification. Unused 5' Gene Expression library construction reagents will be lost, if the Gene Expression Library Construction is not performed as the next step. A more suitable option in this case would be to use the Chromium Next GEM Single Cell 5' cDNA Kit (PN-1000425) for cDNA generation. Refer to Chromium Next GEM Single Cell 5' cDNA Kit v2 User Guide Supplement (CG000473) and Automated Library Construction User Guide (CG000474) for more details.


Automated 5' Gene Expression Library Construction

Amplified full-length cDNA from poly-adenylated mRNA is used to generate 5' Gene Expression library. Enzymatic fragmentation and size selection are used to optimize the cDNA amplicon size prior to 5' gene expression library construction. P5, P7, i5 and i7 sample indexes, and Illumina R2 sequence (read 2 primer sequence) are added via End Repair, A-tailing, Adaptor Ligation, and Sample Index PCR. The final libraries contain the P5 and P7 priming sites used in Illumina sequencers.

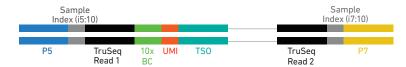
Automated V(D)J Amplification from cDNA

Amplified full-length cDNA from poly-adenylated mRNA is used to amplify full-length V(D)J segments (10x Barcoded) via PCR amplification with primers specific to either the TCR or BCR constant regions. If both T and B cells are expected to be present in the partitioned cell population, TCR and BCR transcripts can be amplified in separate reactions from the same amplified cDNA material.

Automated V(D)J Library Construction

Enzymatic fragmentation and size selection are used to generate variable length fragments that collectively span the V(D)J segments of the amplified TCR or BCR transcripts prior to library construction.

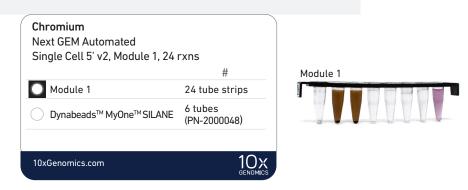
P5, P7, i5 and i7 sample indexes, and an Illumina R2 sequence (read 2 primer sequence) are added via End Repair, A-tailing, Adaptor Ligation, and Sample Index PCR. The final libraries contain the P5 and P7 priming sites used in Illumina sequencing.


Sequencing

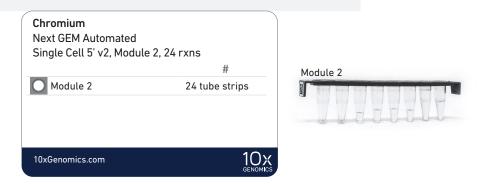
Illumina-ready dual index libraries can be sequenced at the recommended depth & run parameters. Illumina sequencer compatibility, sample indices, library loading and pooling for sequencing are summarized in the Sequencing chapter.

Chromium Single Cell V(D)J Dual Index Library

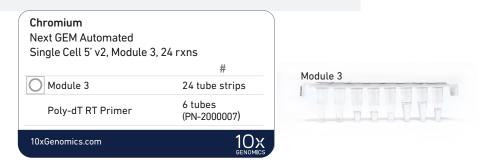
Chromium Single Cell 5' Gene Expression Dual Index Library


See Appendix for Oligonucleotide Sequences

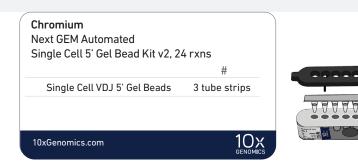
Chromium Next GEM Automated Single Cell 5' Reagent Kits v2


Chromium Next GEM Automated Single Cell 5' Kit v2, 24 rxns PN-1000290

Reagent volumes and colors are different in each of the module types.

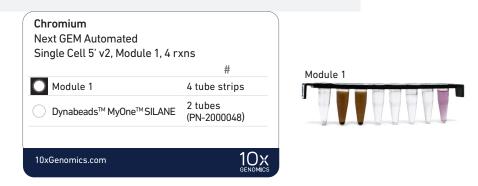

Chromium Next GEM Automated Single Cell 5' Kit v2, Module 1, 24 rxns PN-1000292 (store at 4°C)

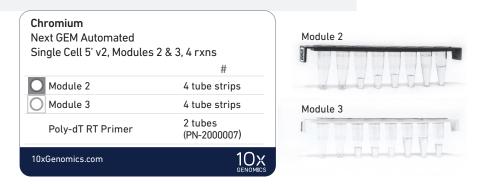
Chromium Next GEM Automated Single Cell 5' Kit v2, Module 2, 24 rxns PN-1000293 (store at -20°C)



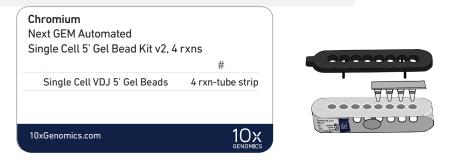
Chromium Next GEM Automated Single Cell 5' Kit v2, Module 3, 24 rxns PN-1000294 (store at -20°C)

Gel Bead Strip


Chromium Next GEM Automated Single Cell 5' Gel Bead Kit v2, 24 rxns PN-1000291 (store at -80°C)

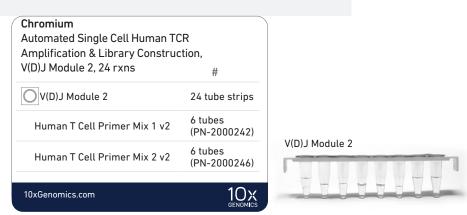

Chromium Next GEM Automated Single Cell 5' Kit v2, 4 rxns PN-1000298

Reagent volumes and colors are different in each of the module types.


Chromium Next GEM Automated Single Cell 5' Kit v2, Module 1, 4 rxns PN-1000295 (store at 4°C)

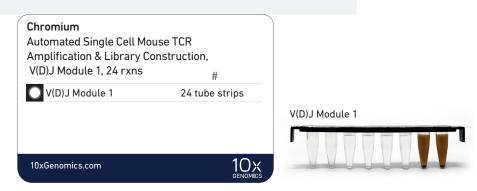
Chromium Next GEM Automated Single Cell 5' Kit v2, Modules 2 & 3, 4 rxns PN-1000296 (store at -20°C)

Chromium Next GEM Automated Single Cell 5' Gel Bead Kit v2, 4 rxns PN-1000299 (store at -80°C)

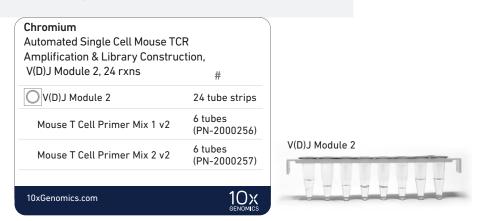

Chromium Automated Single Cell Human TCR Amplification & Library Construction Kit, 24 rxns PN-1000300

Reagent volumes and colors are different in each of the module types.

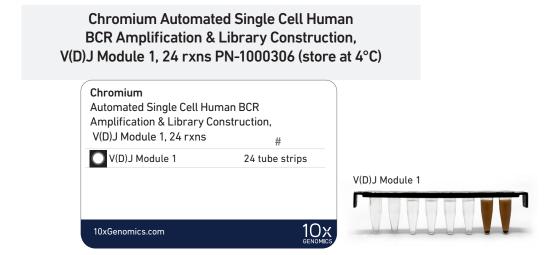
Chromium Automated Single Cell Human TCR Amplification & Library Construction, V(D)J Module 1, 24 rxns PN-1000301 (store at 4°C)

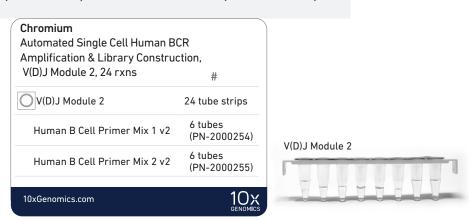


Chromium Automated Single Cell Human TCR Amplification & Library Construction, V(D)J Module 2, 24 rxns PN-1000302 (store at -20°C)

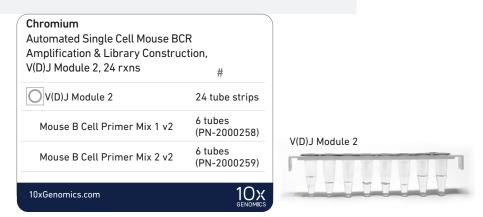


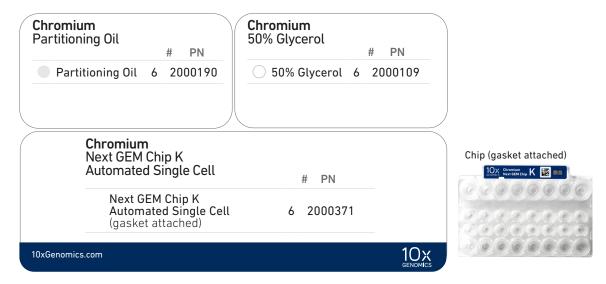
Chromium Automated Single Cell Mouse TCR Amplification & Library Construction Kit, 24 rxns PN-1000310


Chromium Automated Single Cell Mouse TCR Amplification & Library Construction, V(D)J Module 1, 24 rxns PN-1000303 (store at 4°C)

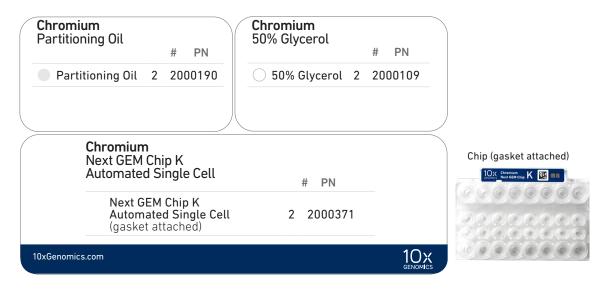

Chromium Automated Single Cell Mouse TCR Amplification & Library Construction, V(D)J Module 2, 24 rxns PN-1000304 (store at -20°C)

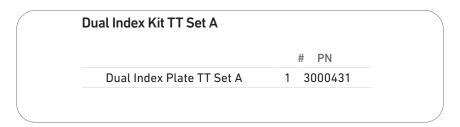
Chromium Automated Single Cell Human BCR Amplification & Library Construction Kit, 24 rxns PN-1000305


Chromium Automated Single Cell Human BCR Amplification & Library Construction, V(D)J Module 2, 24 rxns PN-1000307 (store at -20°C)


Chromium Automated Single Cell Mouse BCR Amplification & Library Construction Kit, 24 rxns PN-1000311

Chromium Automated Single Cell Mouse BCR Amplification & Library Construction Kit, V(D)J Module 1, 24 rxns PN-1000308 (store at 4°C) Chromium Automated Single Cell Mouse BCR Amplification & Library Construction, V(D)J Module 1, 24 rxns # V(D)J Module 1 24 tube strips V(D)J Module 1


Chromium Automated Single Cell Mouse BCR Amplification & Library Construction Kit, V(D)J Module 2, 24 rxns PN-1000309 (store at -20°C)


Chromium Next GEM Chip K Automated Single Cell Kit, 48 rxns PN-1000289 (store at ambient temperature)

Chromium Next GEM Chip K Automated Single Cell Kit, 16 rxns PN-1000297 (store at ambient temperature)

Dual Index Kit TT Set A, 96 rxns PN-1000215 (store at -20°C)

Chromium Next GEM Automated 5' Quick Planner Card

Gather the listed items & reagents before running the assay. Follow the touchscreen prompts for detailed information.

		· · · · · · · · · · · · · · · · · · ·
Gather indicated items prior to running the a	issay	
☐ Set thermal cycler to 37°C and lid to 50°C		Eppendorf 96-well Semi skirted plate, 96 well – 1 per run
□ Nuclease free water – 10 ml		☐ Eppendorf 96-well Full skirted plate, 96 well – 1 per run
Ethanol, Pure (200 Proof, anhydrous) – 41 Combine 40 ml EtOH and 10 ml nuclease prepare 80% EtOH	0 ml free water to	50 μl Black CO-RE/CO-RE II Pipette Tips, with filter • 7-8 samples: 2 racks • 4-6 samples: 2 racks
□ ComfortLids – 6 per run		• 1-3 samples: 1 rack
□ MicroAmp 8-tube strips, 0.2 ml – 2 per ru	ın	300 µl Black CO-RE/ CO-RE II Pipette Tips, with filter • 7-8 samples: 4 racks
☐ Reagent reservoirs, 60 ml – 3 per run		4-6 samples: 3 racks 1-3 samples: 2 rack
10x Reagents	Storage	Preparation & Handling
Next GEM Chip K Automated 1 per run	Room temp.	Set aside, keep sealed. Follow the touchscreen prompts to load on deck.
Partitioning oil, □ 50% Glycerol 1 tube each per run	Room temp. (Chip box)	Keep capped. Follow the touchscreen prompts to remove the cap after cells are loaded on the deck.
Library Module 1 (black tube strip) 1 tube strip per sample	4°C	Use a thermal cycler (lid temp 50°C) to thaw for 30 min at 37°C. Vortex at 15 min and again at 30 min, centrifuge at 300 rcf for 1 min.
Dynabeads MyOne Silane - 1 tube per run □ DO NOT save excess 2 tubes/4rxn kit; 6 tubes/24rxn kit	4°C (Module 1 Box)	Equilibrate to room temperature. Immediately before use, vortex (≥30 sec). Aspirate the full liquid volume with a pipette tip to verify that the beads have not settled in the bottom of the tube. Using a 200 µl pipettor (set to 150 µl), pipette mix at least 20X to fully resuspend clumps. If clumps are still present, repeat vortex ≥30 sec; pipette mix 20X or until fully resuspended. DO NOT centrifuge. DO NOT remove cap until prompted on touchscreen.
Library Module 2 (grey tube strip) 1 tube strip per sample	-20°C	Thaw at room temperature for 30 min. Vortex, centrifuge at 300 rcf for 1 min.
Library Module 3 (white strip tube) 1 tube strip per sample	-20°C	Thaw at 4°C or on ice. Maintain on ice until ready to load. Before loading, invert mix (DO NOT vortex), centrifuge at 300 rcf for 1 min .
Poly-dT RT Primer - 1 tube per run DO NOT save excess 2 tubes/4rxn kit; 6 tubes/24rxn kit	-20°C (Module 3 box)	Thaw at room temperature for 30 min . Vortex, centrifuge briefly.
Dual Index TT Set A Plate (SI Plate) 1 plate per run, 1 well per sample	-20°C	Thaw at room temperature for 30 min . Vortex, centrifuge briefly.
☐ Gel Beads Strip(s) – 1 well per sample	-80°C	Thaw at room temperature ≥ 30 min. Vortex 30 sec, centrifuge 5 sec.

Tips & Best Practices

Consult the Chromium Connect User Guide (CG000180) and follow the Chromium Connect Touchscreen prompts for specifics of assay execution.

Consumables

 Use validated and recommended emulsion-safe plastic consumables as some plastics can destabilize GEMs.

Cell Concentration

- Resuspend samples in PBS+ 0.04% BSA. Total volume loaded onto the sample plate can be either 10 µl or 32 µl (must be the same volumes for all samples in a given run).
- Based on cell stock concentration, do sequential stock dilutions, if needed.
- Use 3 independent cell counts to determine cell concentration.
- The presence of dead cells in the suspension may also reduce the recovery rate.
 Consult the 10x Genomics Single Cell Protocols Cell Preparation Guide and the
 Guidelines for Optimal Sample Preparation flowchart (Documents CG00053 and
 CG000126 respectively) for more information on preparing cells.
- Refer to the 10x Genomics Support website for more information regarding cell type specific sample preparation.

Multiplet Rate (%)	# of Cells Loaded	# of Cells Recovered
~0.4%	~870	~500
~0.8%	~1,700	~1,000
~1.6%	~3,500	~2,000
~2.3%	~5,300	~3,000
~3.1%	~7,000	~4,000
~3.9%	~8,700	~5,000
~4.6%	~10,500	~6,000
~5.4%	~12,200	~7,000
~6.1%	~14,000	~8,000
~6.9%	~15,700	~9,000
~7.6%	~17,400	~10,000

Cell Preparation

- Ensure cell counts are accurate.
- Based on cell stock concentration, do sequential stock dilutions, if needed. Based on sample input volume (10 μl or 32 μl), refer the applicable Cell Suspension Volume Calculator Table for optimal pipetting volumes and concentrations.
- Load cell samples when prompted on the touchscreen.
- The cDNA amplification cycle number will be based on the targeted cell recovery. The
 cycle number chosen for one sample will apply to all the samples in a run.
 Refer to cDNA Amplification Cycle Number for more information.

Reagent Handling

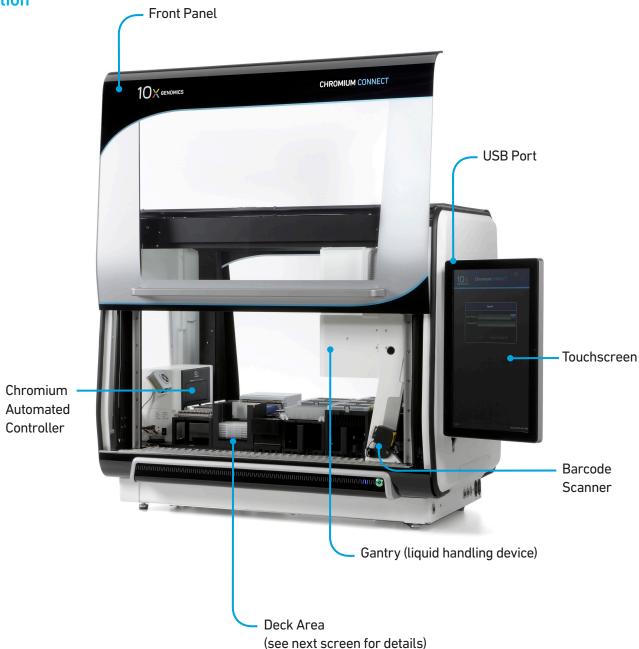
- · Fully thaw and thoroughly mix reagents before use.
- Resuspend Dynabeads and Poly-dT RT Primers at the end of loading.
- Ensure there are no air bubbles at the bottoms of reagent tubes.
- Follow the prompts on the touchscreen for handling Library Modules 1, 2, and 3 during setup and use.
- Follow the promps on the touchscreen for handling V(D)J Modules 1 and 2.
- Ensure correct reagent tube barcode orientation (on tubes and racks) as prompted by the touchscreen.
- Prepare and dispense 80% ethanol off-deck to avoid spilling on consumables.
- When indicated, promptly move reagents back to the recommended storage.

Barcode Orientation

Chromium Automated Chip Handling

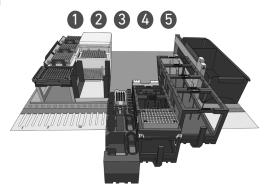
- The automated chip includes a pre-installed gasket.
- Minimize exposure of reagents and chips to sources of particles and fibers, laboratory wipes, frequently opened flip-cap tubes, clothing that sheds fibers, and dusty surfaces.
- Keep chip and gasket in sealed package until prompted to load.
- After removing the chip from the sealed bag, use in ≤
 24 h.
- Avoid contacting the bottom surface of the chip with gloved hands and other surfaces.
- DO NOT use chips or gaskets specific to other 10x Genomics protocols.

Chip (gasket attached)

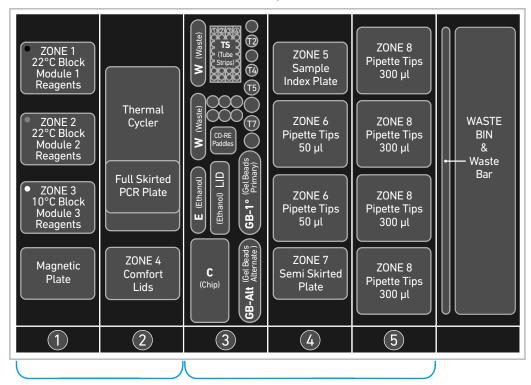


Gasket

Chromium Connect

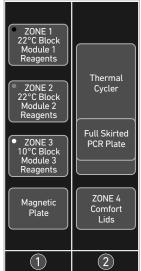

Instrument Orientation
Deck Orientation
CSV Setup

Instrument Orientation



Refer to the Chromium Connect Instrument User Guide (CG000180) and Quick Reference Cards (CG000256) for more information.

Deck Orientation


- T2 Dynabeads MyOne SILANE
- T4 Poly-dT RT Primer
- T5 50% Glycerol
- T7 Partitioning Oil

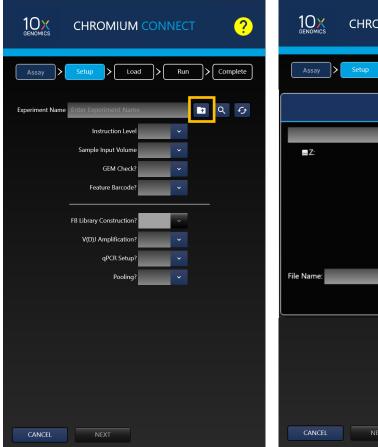
Stationary Carriers

Sliding Carriers

Refer to the Chromium Connect Instrument User Guide (CG000180) and Quick Reference Cards (CG000256) for more information.

	D
rmal cler	
Skirted Plate	
NE 4 nfort ids	
2)	
TS TO	

Deck Layout Reagents/Consumables Chromium Next GEM Automated Single Cell 5' Gene Expression v2 Assay		
Carrier	Zone	Item
	Zone 1 (Black)	22°C Block, Reagent Strips, Module 1
1	Zone 2 (Gray)	22°C Block, Reagent Strips, Module 2
Stationary	Zone 3 (White)	10°C Block, Reagent Strips, Module 3
	-	Magnetic Plate
2	-	Thermal Cycler
Stationary	-	Full Skirted PCR Plate (within Thermal Cycler)
	Zone 4	ComfortLids
	Position W	Waste Reservoirs
	Position TS	Tube Strips (TS-1, TS-2, TS-3 & TS-4)
	Position T2	Dynabeads [™] MyOne [™] SILANE
	Position T4	Poly-dT RT Primer
3*	Position T5	50% Glycerol
Sliding Deck Rails: 15-18	Position T7	Partitioning Oil
Number of Lights: 4	-	CO-RE Paddles
	Position E	Ethanol Reservoir
	Position LID	Lid for Ethanol Reservoir
	Position GB-1°	Gel Beads Primary
*Assay choices determine items loaded in Carrier 3	Position GB-Alt	Gel Beads Alternate
loaded in Carrier 3	Position C	Chip
4	Zone 5	Sample Index Plate
Sliding Deck Rails: 19-24	Zone 6	Pipette Tips 50 μl
Number of Lights: 6	Zone 7	Semi Skirted Plate
5 Sliding Deck Rails: 25-30 Number of Lights: 6	Zone 8	Pipette Tips 300 μl

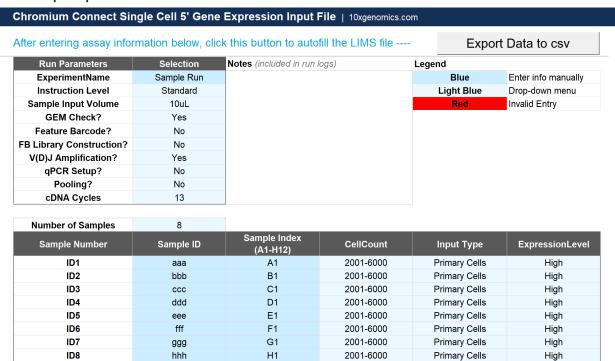

CSV Setup

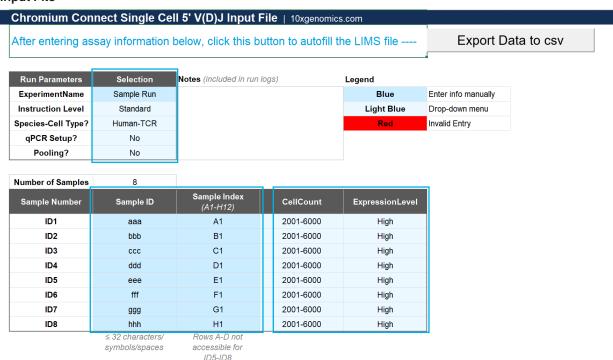
Sample information can also be uploaded using a CSV file at the run setup screen. Use the folder icon to search a network file system or USB drive. Navigate to the appropriate CSV file and click "SELECT".

For 5' Gene Expression Library construction, use Chromium Connect Single Cell 5' Gene Expression Input File (CG000430) and for V(D)J Library construction, use Chromium Connect Single Cell 5' V(D)J Input File (CG000432). All the files are available on the 10x Genomics support website.

Alternatively, customer's CSV files can also be generated using the customer's LIMS system. If using a LIMS system to generate CSV files, use ChromiumConnect_SC5-GEX_InputSampleInfo_Template file (CG000429) and for V(D)J Library construction, use ChromiumConnect_SC5-VDJ_InputSampleInfo_Template file (CG000431).

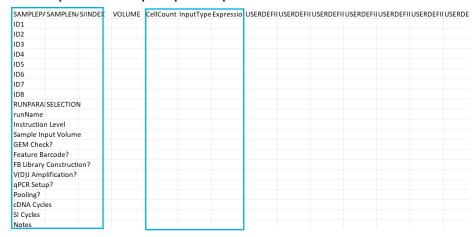
Run Setup Screen

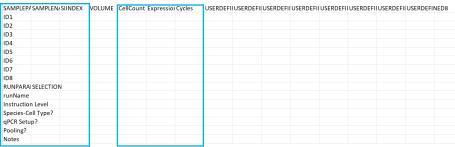



Sample Input Files

Sample input files for Gene Expression and V(D)J Amplification are shown below, refer to Chromium Connect SC5'-GEX Input File (CG000430) for more info. The columns highlighted in blue are mandatory to start a run. Any missing fields/corrections can be added during sample information setup. Final selections will be recorded in the final run report CSV file.

Gene Expression Sample Input File


V(D)J Sample Input File


Sample Input Template Files

Sample input template files for Gene Expression and V(D)J Amplification are shown below, refer to Chromium Connect SC5'-GEX Input Sample Info Template (CG000429) for more info . The columns highlighted in blue are mandatory to start a run. Any missing fields/corrections can be added during sample information setup. Final selections will be recorded in the final run report CSV file.

Gene Expression Sample Input Template File

V(D)J Sample Input Template File

Uploading Sample Information Using a Template File

The following tables provide specific guidelines on sample entry in the template file.

Sample Parameters	Information
Sample Name	Alphanumeric and up to 32 characters
SI Index	Location on sample index plate to be used for each sample during SI PCR
Expression Level	User defined field for tracking Example: High cell expression: Cell lines Low cell expression: PBMCs
Cell Count	User defined field for tracking (enter applicable option EXACTLY as shown below) 500-2000 2001-6000 6001-10000 DO NOT use commas. Space between symbol & number required.

Up to four user-defined fields (LIMS data) can be passed through the instrument for additional sample tracking.

Run Parameters	Information
Run Name	Alphanumeric and up to 32 characters
Instruction Level	Standard, Advanced, Expert Refer to the Chromium Connect Instrument User Guide (CG000180) for details
Sample Input Volume	10 µl or 32 µl
Run Steps	GEX/cDNA only
GEM Check	Opt-in for optional QC step: Yes/No
Feature Barcode	Opt-in for optional assay step: Yes/No
Feature Barcode Library Construction	Opt-in for optional assay step: Yes/No
V(D)J Amplification	Opt-in for optional assay step: Yes/No
qPCR Setup	Opt-in for optional assay step: Yes/No
Pooling	Opt-in for optional assay step: Yes/No
Species-Cell Type	Human-TCR/Human-BCR Mouse-TCR/Mouse-BCR
cDNA Cycles	User defined field. Refer to cDNA Amplification Cycle Number for guidance on optimal cycles.
SI Cycles	User defined field. Refer to appropriate section in this User Guide for guidance.

Items & Reagents for cDNA Amplification & 5' GEX Library Construction

Gather Items & Reagents

Follow prompts on the Chromium Connect touchscreen to gather the listed items and reagents for loading the Deck Carriers.

Gather the quantities specified for each of the items and reagents.

Item	Qty
Nuclease-free Water	10 ml
Ethanol, Pure (200 Proof, anhydrous)	40 ml
Hamilton	
ComfortLids	6
50 μl CO-RE Pipette Tips, with filter (Black, Conductive)	2 racks
300 µl CO-RE Pipette Tips, with filter (Black, Conductive)	4 racks
Reagent Reservoir, 60 ml	3
Eppendorf	
96-well Semi Skirted Plate	1
96-well Full Skirted Plate	1
Thermo Fisher Scientific	
MicroAmp 8-Tube Strip, 0.2 ml	2
10x Genomics	
Chromium Next GEM Chip K Automated Single Cell Kit (stored at room temperature) Partitioning Oil 50% Glycerol Chip K (keep chip sealed)	1
Chromium Next GEM Automated Single Cell 5' Gel Bead Kit v2 (stored at -80°C) Single Cell VDJ 5' Gel Bead v2	1 tube/sample
Chromium Next GEM Automated Single Cell 5' Kit v2	
Module 1 (stored at 4°C) Black tube strip Dynabeads Module 2 (stored at 20°C)	1 tube strip/sample 1 tube/run
Module 2 (stored at -20°C) Gray tube strip	1 tube strip/sample
Module 3 (stored at -20°C) White tube strip Poly-dT RT Primer	1 tube strip/sample 1 tube/run
Dual Index Plate TT Set A (stored at -20°C)	1 plate

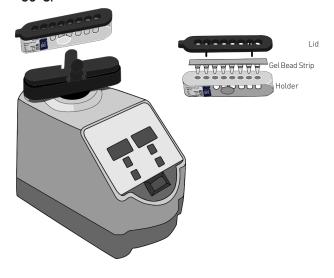
See Additional Kits, Reagents & Equipment list for performing optional assays and/or QC.

Thaw & Prep Reagents

Follow prompts on the touchscreen to thaw and prepare reagents. Some important guidelines are highlighted below.

ACTION	GUIDELINES Follow touchscreen prompts for specifics and timing
Thaw Reagents	Thaw reagents as indicated on the touchscreen. Verify no precipitate is present. Ensure that the correct thawing locations and temperatures are used. During reagent thaw load the consumables following touchscreen prompts.
Prepare Ethanol	Prepare 50 ml 80% Ethanol in Nuclease-free water and dispense in Ethanol Reservoir when prompted.
Poly-dT RT Primer	Vortex only when prompted on the touchscreen. Centrifuge briefly before loading.
Dynabeads	Equilibrate to room temperature. Immediately before use: Vortex Dynabeads for ≥30 sec. Aspirate the full liquid volume with a pipette tip to verify that the beads have not settled in the bottom of the tube. Using a 200 μl pipettor (set to150 μl), pipette mix at least 20X to fully resuspend clumps. If clumps are still present, repeat vortex ≥30 sec; pipette mix 20X or until fully resuspended. DO NOT centrifuge. DO NOT remove cap until prompted on touchscreen. Confirm there are no bubbles at the bottom of the tube.
Library Modules	Thaw Library Modules as prompted on the touchscreen. After reagent thaw, invert rack holding Module tube strips and vortex Library Modules 1 and 2 for 30 sec; verify no precipitate. Confirm there are no bubbles at the bottoms of any module tubes Centrifuge Library Modules 1 and 2 at 300 rcf for 1 min at 22°C. Retrieve Library Module 3 from 4°C thaw. DO NOT vortex. Invert-mix and centrifuge at 300 rcf for 1 min at 22°C.

Confirm that there are no bubbles at the bottoms of any module tubes, Dual Index Plate wells, or Primer tubes.


Thaw & Prep Reagents

Follow prompts on the touchscreen to thaw and prepare reagents. Some important guidelines are highlighted below.

ACTION	GUIDELINES
	Follow touchscreen prompts for specifics and timing

Prepare Gel Beads

- Equilibrate the Gel Beads for 30 min at room temperature before use.
- Snap the tube strip holder with the Gel Bead strip into a 10x Vortex Adapter. Vortex 30 sec.
- Centrifuge the Gel Bead strip for ~5 sec after removing from the holder. Confirm there are no bubbles at the bottom of the tubes and the liquid levels look even.
- Place the Gel Bead strip back in the holder and secure the holder lid.
- Store unused Gel Beads at -80°C and avoid more than 12 freeze-thaw cycles. DO NOT leave Gel Beads at room temperature for >24 h.
- Remove Gel Beads from the Deck during any of the QCs and store the holder with the unused Gel Beads at -80°C.

Sample Preparation Guidelines

Sample Preparation Guidelines

• Resuspend samples in PBS + 0.04% BSA. Total volume loaded per sample onto the sample plate is either 10 μ l or 32 μ l (must be the same volumes for all samples in a given run).

- Based on the sample input volume (10 μl or 32 μl), refer to the applicable Cell Suspension Volume Calculator Table for the cell suspension and buffer volumes.
- Based on cell stock concentration, do seguential stock dilutions, if needed.
- It is recommended to use 3 independent cell counts to determine cell concentration.
- The presence of dead cells in the suspension may also reduce the recovery rate.
 Consult the 10x Genomics Single Cell Protocols Cell Preparation Guide and the Guidelines for Optimal Sample Preparation flowchart (Documents CG00053 and CG000126, respectively) for more information on preparing cells.
- The cell load impacts PCR cycle numbers for cDNA amplification and other downstream steps in the assay. Refer to Additional Protocol Guidelines chapter for more information.
- Differences in manual and automated sample preparation are outlined below:

	Manual	Automated		
Sample Prep	Using 10x Genomics Demonstrated Protocols for cell prep and QC			
		10 μl or 32 μl		
Sample Input Volume	Up to 38.7 μl	Refer to the applicable Cell Suspension Volume Calculator Table		
Sample Loading	PCR strip tubes	96-well skirted plate		
Samples per Chip	1-8	1-8		
Samples Tested	Various	Human PBMCs, mouse PBMCs, mouse splenocytes, human melanoma		

Samples are loaded in column 1, starting at A1. It is not necessary to add glycerol to unused sample wells when running <8 samples.

10 µl Sample Input – Cell Suspension Volume Calculator Table

(Chromium Connect Automated Single Cell 5' v2 protocol)

Volume of Cell Suspension Stock per reaction (µl) | Volume of PBS + 0.04% BSA (µl)

Cell Stock					Target	ed Cell Re	covery				
Conc. (cells/ µl)	500	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000
100	8.3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
100	1.8	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
200	4.1	8.3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
200	5.9	1.8	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
300	2.8	5.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
300	7.3	4.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
400	2.1	4.1	8.3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
400	7.9	5.9	1.8	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
500	1.7	3.3	6.6	9.9	n/a	n/a	n/a	n/a	n/a	n/a	n/a
300	8.4	6.7	3.4	0.1	n/a	n/a	n/a	n/a	n/a	n/a	n/a
600	1.4	2.8	5.5	8.3	n/a	n/a	n/a	n/a	n/a	n/a	n/a
000	8.6	7.3	4.5	1.8	n/a	n/a	n/a	n/a	n/a	n/a	n/a
700	1.2	2.4	4.7	7.1	9.4	n/a	n/a	n/a	n/a	n/a	n/a
700	8.8	7.6	5.3	2.9	0.6	n/a	n/a	n/a	n/a	n/a	n/a
800	1.0	2.1	4.1	6.2	8.3	n/a	n/a	n/a	n/a	n/a	n/a
000	9.0	7.9	5.9	3.8	1.8	n/a	n/a	n/a	n/a	n/a	n/a
900	0.9	1.8	3.7	5.5	7.3	9.2	n/a	n/a	n/a	n/a	n/a
700	9.1	8.2	6.3	4.5	2.7	0.8	n/a	n/a	n/a	n/a	n/a
1000	0.8	1.7	3.3	5.0	6.6	8.3	9.9	n/a	n/a	n/a	n/a
1000	9.2	8.4	6.7	5.1	3.4	1.8	0.1	n/a	n/a	n/a	n/a
1100	0.8	1.5	3.0	4.5	6.0	7.5	9.0	n/a	n/a	n/a	n/a
1100	9.3	8.5	7.0	5.5	4.0	2.5	1.0	n/a	n/a	n/a	n/a
1200	0.7	1.4	2.8	4.1	5.5	6.9	8.3	9.6	n/a	n/a	n/a
1200	9.3	8.6	7.3	5.9	4.5	3.1	1.8	0.4	n/a	n/a	n/a
1300	0.6	1.3	2.5	3.8	5.1	6.3	7.6	8.9	n/a	n/a	n/a
1300	9.4	8.7	7.5	6.2	4.9	3.7	2.4	1.1	n/a	n/a	n/a
1400	0.6	1.2	2.4	3.5	4.7	5.9	7.1	8.3	9.4	n/a	n/a
1400	9.4	8.8	7.6	6.5	5.3	4.1	2.9	1.8	0.6	n/a	n/a
1500	0.6	1.1	2.2	3.3	4.4	5.5	6.6	7.7	8.8	9.9	n/a
1500	9.5	8.9	7.8	6.7	5.6	4.5	3.4	2.3	1.2	0.1	n/a
1400	0.5	1.0	2.1	3.1	4.1	5.2	6.2	7.2	8.3	9.3	n/a
1600	9.5	9.0	7.9	6.9	5.9	4.8	3.8	2.8	1.8	0.7	n/a
1700	0.5	1.0	1.9	2.9	3.9	4.9	5.8	6.8	7.8	8.7	9.7
1700	9.5	9.0	8.1	7.1	6.1	5.1	4.2	3.2	2.2	1.3	0.3
1000	0.5	0.9	1.8	2.8	3.7	4.6	5.5	6.4	7.3	8.3	9.2
1800	9.5	9.1	8.2	7.3	6.3	5.4	4.5	3.6	2.7	1.8	0.8
1000	0.4	0.9	1.7	2.6	3.5	4.3	5.2	6.1	6.9	7.8	8.7
1900	9.6	9.1	8.3	7.4	6.5	5.7	4.8	3.9	3.1	2.2	1.3
2000	0.4	0.8	1.7	2.5	3.3	4.1	5.0	5.8	6.6	7.4	8.3
2000	9.6	9.2	8.4	7.5	6.7	5.9	5.1	4.2	3.4	2.6	1.8

Grey boxes: Yellow boxes: Blue boxes: Volumes that would exceed the allowable buffer volume in each reaction Indicate a low transfer volume that may result in higher cell load variability

Optimal range of cell stock concentration to maximize the likelihood of achieving the desired cell recovery target

32 µl Sample Input – Cell Suspension Volume Calculator Table

(Chromium Connect Automated Single Cell 5' v2 protocol)

Volume of Cell Suspension Stock per reaction (µl) | Volume of PBS + 0.04% BSA (µl)

Cell Stock					Target	ed Cell Re	covery				
Conc. (cells/ µl)	500	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000
100	8.3	16.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
100	23.8	15.5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
200	4.1	8.3	16.5	24.8	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	27.9	23.8	15.5	7.3	n/a	n/a	n/a	n/a	n/a	n/a	n/a
300	2.8	5.5	11.0	16.5	22.0	27.5	n/a	n/a	n/a	n/a	n/a
	29.3	26.5	21.0	15.5	10.0	4.5	n/a	n/a	n/a	n/a	n/a
400	2.1	4.1	8.3	12.4	16.5	20.6	24.8	28.9	n/a	n/a	n/a
	29.9	27.9	23.8	19.6	15.5	11.4	7.3	3.1	n/a	n/a	n/a
500	1.7	3.3	6.6	9.9	13.2	16.5	19.8	23.1	26.4	29.7	n/a
	30.4	28.7	25.4	22.1	18.8	15.5	12.2	8.9	5.6	2.3	n/a
600	1.4	2.8	5.5	8.3	11.0	13.8	16.5	19.3	22.0	24.8	27.5
	30.6	29.3	26.5	23.8	21.0	18.3	15.5	12.8	10.0	7.3	4.5
700	1.2	2.4	4.7	7.1	9.4	11.8	14.1	16.5	18.9	21.2	23.6
	30.8	29.6	27.3	24.9	22.6	20.2	17.9	15.5	13.1	10.8	8.4
800	1.0	2.1	4.1	6.2	8.3	10.3	12.4	14.4	16.5	18.6	20.6
	31.0	29.9	27.9	25.8	23.8	21.7	19.6	17.6	15.5	13.4	11.4
900	0.9	1.8	3.7	5.5	7.3	9.2	11.0	12.8	14.7	16.5	18.3
	31.1	30.2	28.3	26.5	24.7	22.8	21.0	19.2	17.3	15.5	13.7
1000	0.8	1.7	3.3	5.0	6.6	8.3	9.9	11.6	13.2	14.9	16.5
	31.2	30.4	28.7	27.1	25.4	23.8	22.1	20.5	18.8	17.2	15.5
1100	0.8	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	13.5	15.0
	31.3	30.5	29.0	27.5	26.0	24.5	23.0	21.5	20.0	18.5	17.0
1200	0.7	1.4	2.8	4.1	5.5	6.9	8.3	9.6	11.0	12.4	13.8
	31.3	30.6	29.3	27.9	26.5	25.1	23.8	22.4	21.0	19.6	18.3
1300	0.6	1.3	2.5	3.8	5.1	6.3	7.6	8.9	10.2	11.4	12.7
	31.4	30.7	29.5	28.2	26.9	25.7	24.4	23.1	21.8	20.6	19.3
1400	0.6	1.2	2.4	3.5	4.7	5.9	7.1	8.3	9.4	10.6	11.8
	31.4	30.8	29.6	28.5	27.3	26.1	24.9	23.8	22.6	21.4	20.2
1500	0.6	1.1	2.2	3.3	4.4	5.5	6.6	7.7	8.8	9.9	11.0
	31.5	30.9	29.8	28.7	27.6	26.5	25.4	24.3	23.2	22.1	21.0
1600	0.5	1.0	2.1	3.1	4.1	5.2	6.2	7.2	8.3	9.3	10.3
	31.5	31.0	29.9	28.9	27.9	26.8	25.8	24.8	23.8	22.7	21.7
1700	0.5	1.0	1.9	2.9	3.9	4.9	5.8	6.8	7.8	8.7	9.7
	31.5	31.0	30.1	29.1	28.1	27.1	26.2	25.2	24.2	23.3	22.3
1800	0.5	0.9	1.8	2.8	3.7	4.6	5.5	6.4	7.3	8.3	9.2
	31.5	31.1	30.2	29.3	28.3	27.4	26.5	25.6	24.7	23.8	22.8
1900	0.4	0.9	1.7	2.6	3.5	4.3	5.2	6.1	6.9	7.8	8.7
	31.6	31.1	30.3	29.4	28.5	27.7	26.8	25.9	25.1	24.2	23.3
2000	0.4	0.8	1.7	2.5	3.3	4.1	5.0	5.8	6.6	7.4	8.3
	31.6	31.2	30.4	29.5	28.7	27.9	27.1	26.2	25.4	24.6	23.8

Grey boxes: Volumes that would exceed the allowable buffer volume in each reaction
Yellow boxes: Indicate a low transfer volume that may result in higher cell load variability

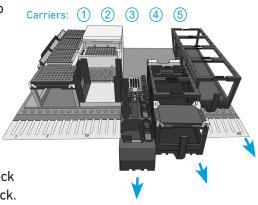
Blue boxes: Optimal range of cell stock concentration to maximize the likelihood of achieving the desired cell recovery target

Carrier Loading Guidelines

Carrier Loading Guidelines

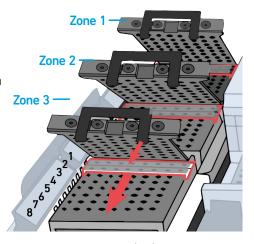
Follow the instructions on the touchscreen to load the carriers.

Carriers


- Handle the carriers as prompted.
- Ensure that Carriers 3, 4, and 5 are completely slid out and placed on an offdeck workspace before loading.
- Align the carriers to the corresponding Deck Rails when sliding them in or out of the deck.
- Ensure correct orientation of tube labels with barcodes to enable Barcode Scanning.

Modules

- Load one tube strip/sample of each of the indicated modules in the corresponding positions on the Carrier, starting from back to front row.
- DO NOT skip any rows when loading.
- Use pinhole alignment to place module tube strips in the correct orientation (as shown on the touchscreen).

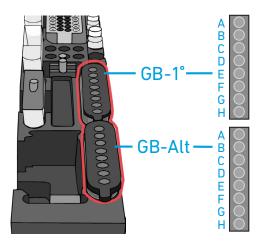

Label Tube Strip Orientation

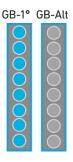
- The cDNA tube strip will be at Position 1 and the final library tube strip will be at Position 4 in the Tube Strip Holder.
- Label tube strip orientation for collecting cDNA and final libraries.

Barcode Orientation

Tube Strip (TS) Holder

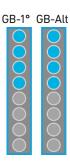
Consult the Chromium Connect User Guide (CG000180) for more information.

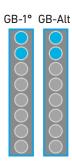

Carrier Loading Guidelines


Load Gel Beads

- Up to 2 Gel Bead tube strips may be loaded in the primary (GB-1°) and alternate (GB-Alt) positions. One Gel Bead tube is required/ sample.
- If only loading one tube strip, load in the primary position.
- Select the location of the loaded Gel Bead tube on the touchscreen.
- Examples of various Gel Bead loading combinations are illustrated below.

Example 1


8 samples run with 1 Gel Bead tube strip loaded in GB-1° location.


Example 2

8 samples run with 2 Gel Bead tube strips loaded in GB-1° and GB-Alt locations.

Example 3

4 samples run with 2 Gel Bead tube strips loaded in GB-1° and GB-Alt locations.

Additional Protocol Guidelines

Confirm GEM Generation cDNA Amplification Cycles cDNA QC & Quantification

Confirm GEM Generation

- Instrument will pause for 5 min during GEM QC.
- Carefully remove Full Skirted Plate from the Thermal Cycler.
- Hold up the Full Skirted Plate and view the bottom of the wells in Column 3 to confirm GEM generation (shown below).

cDNA Amplification Cycle Number

- cDNA amplification cycles are determined by target cell number.
- Recommended guidelines for selecting optimal amplification cycle numbers

Recommended starting point for cycle number optimization.

Targeted Cell Recovery	<u>Low RNA Content Cells</u> e.g., <u>Primary Cells</u> Total Cycles	<u>High RNA Content Cells</u> <u>e.g., Cell Lines</u> Total Cycles
500-2,000	16	14
2,001-6,000	14	12
6,001-10,000	13	11

 The optimal number of cycles is a trade-off between generating sufficient final mass for library construction and minimizing PCR amplification artifacts. The number of cDNA cycles should also be reduced if large numbers of cells are sampled.

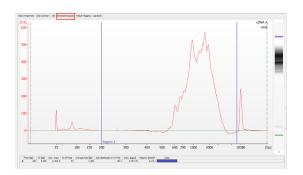
Cycle number selected for one sample will apply to all the other samples in the run.

For V(D)J Target Amplification workflow, save 2µl cDNA for every target reaction.

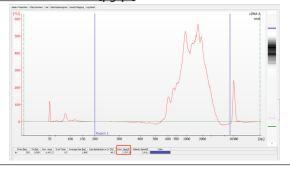
cDNA QC & Quantification

For V(D)J + GEX Library Construction proceed directly to GEX Library Construction first, followed by V(D)J Amplification and V(D)J Library Construction. If GEX library is not desired, proceed directly to V(D)J Amplification.

- a. Follow the instruction on the touchscreen for cDNA QC & quantification.
- b. Run sample on an Agilent Bioanalyzer High Sensitivity chip.
 Run 1 μl undiluted product for input cells with low RNA content (<1 pg total RNA/cell), and 1 μl of 1:10 diluted product for input cells with high RNA content.



- c. If proceeding to 5' GEX Library Construction, determine cDNA yield for each sample. Example calculation below.
- **d.** Enter the cDNA concentration (pg/ μ l) and the calculated input volume (μ l) on the touchscreen to proceed with GEX library construction.


EXAMPLE CALCULATION

i. Select Region

Under the "Electropherogram" view choose the "Region Table". Manually select the region of $\sim\!200-\sim\!9000$ bp

ii. Note Concentration [pg/µl]

iii. Calculate

Concentration: 2787.20 pg/µl Dilution Factor: 1

cDNA Conc. = $\frac{\text{Conc.} (pg/\mu l) \times \text{Dilution Factor}}{1000 (pg/ng)} = \frac{2787.20 \times 1}{1000} = 2.79 \text{ ng/}\mu l$

Example Calculation for Carrying Forward 60 ng Sample for 5' GEX Library Construction

Volume for 60 ng = $\frac{60 \text{ ng}}{2.79 \text{ (ng/µl)}}$ = $\frac{21.5 \text{ µl}}{2.79 \text{ (ng/µl)}}$

• If the volume for 60 ng exceeds 22 μ l, carry ONLY 22 μ l sample into library construction. The sample input volume should be in the 5–22 μ l range.

Sample volume for library construction = 21.5 µl

If <60* ng available, carry forward 22 μ l sample (2-60 ng) into 5' GEX Library Construction.

*Note that the intended sample amount differs from manual protocol to account for pipetting differences in automation.

DO NOT exceed a mass of 60 ng in the 22 µl carry forward volume.

Alternate Quantification Methods:

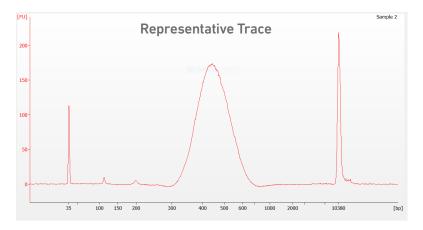
Agilent TapeStation

5' Gene Expression (GEX) Library Construction Guidelines

Sample Index PCR
Post Library Construction QC

Sample Index PCR

- The cycle numbers can be manually selected based on cDNA input.
- Recommended guidelines for selecting optimal Sample Index PCR cycle number.

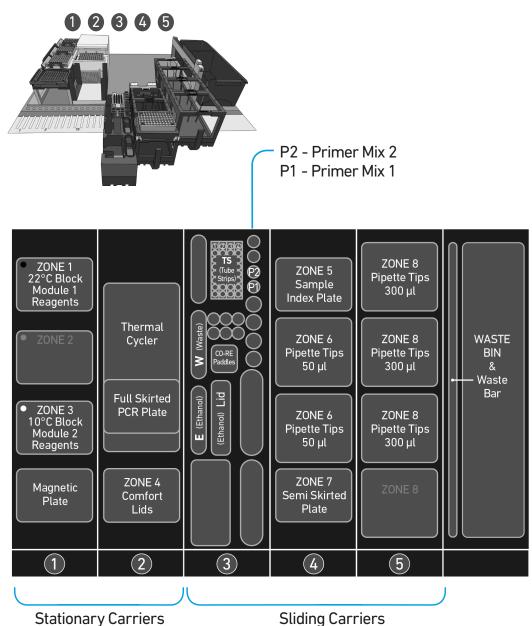

cDNA Input	Total Cycles
1-30 ng	16
31-60 ng	14

Cycle number selected will apply to all the samples in the run.

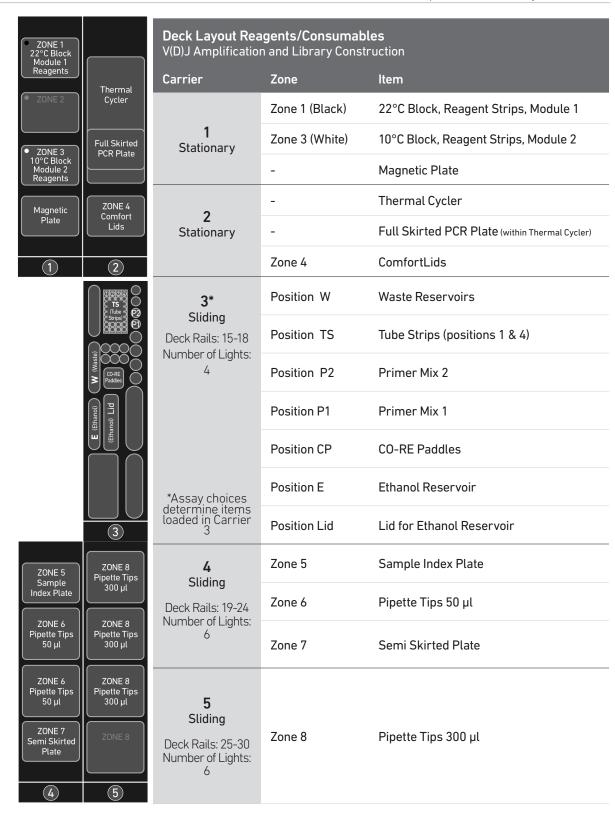
Post Library Construction QC

Run sample on an Agilent Bioanalyzer High Sensitivity chip.

Determine the average fragment size from the Bioanalyzer trace. This will be used as the insert size for library quantification.


Alternate QC Method:

- Agilent TapeStation
- PerkinElmer LabChip (See Appendix for representative traces)


V(D)J Amplification & Library Construction Guidelines

Deck Orientation for V(D)J Amplification
Gather Items & Reagents
Thaw & Prep Reagents
V(D)J Amplification
Post Library Construction QC

Deck Orientation – V(D)J Amplification & Library Construction

Refer to the Chromium Connect Instrument User Guide (CG000180) and Quick Reference Cards (CG000256) for more information.

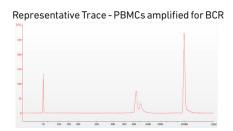
Gather Items & Reagents for V(D)J Amplification and Library Construction

2µl of cDNA is needed for each V(D)J Target Amplification reaction. Follow prompts on the Chromium Connect touchscreen to gather the listed items and reagents for loading the Deck Carriers. Gather the quantities specified for each of the items and reagents.

Item	Qty
Nuclease-free Water	10 ml
Ethanol, Pure (200 Proof, anhydrous)	40 ml
Hamilton	
ComfortLids	6
50 μl CO-RE Pipette Tips, with filter (Black, Conductive)	2 racks
300 μl CO-RE Pipette Tips, with filter (Black, Conductive)	3 racks
Reagent Reservoir, 60 ml	2
Eppendorf	
96-well Semi Skirted Plate	1
96-well Full Skirted Plate	1
Thermo Fisher Scientific	
MicroAmp 8-Tube Strip, 0.2 ml	2
10x Genomics	
Chromium Automated Single Cell Human TCR Amplification & Library Construction v2	
V(D)J Module 1 (stored at 4°C) Black tube strip	1 tube strip/sample
V(D)J Module 2 (stored at -20°C) White tube strip Human T Cell Primer Mix 1 v2 Human T Cell Primer Mix 2 v2	1 tube strip/sample 1 tube/run 1 tube/run
Chromium Automated Single Cell Mouse TCR Amplification & Library Construction v2	
V(D)J Module 1 (stored at 4°C) Black tube strip	1 tube strip/sample
V(D)J Module 2 (stored at -20°C) White tube strip Mouse T Cell Primer Mix 1 v2 Mouse T Cell Primer Mix 2 v2	1 tube strip/sample 1 tube/run 1 tube/run
Chromium Automated Single Cell Human BCR Amplification & Library Construction v2	
V(D)J Module 1 (stored at 4°C) Black tube strip	1 tube strip/sample
V(D)J Module 2 (stored at -20°C) White tube strip Human B Cell Primer Mix 1 v2 Human B Cell Primer Mix 2 v2	1 tube strip/sample 1 tube/run 1 tube/run

Thaw & Prep Reagents for V(D)J Amplification & Library Construction Follow prompts on the touchscreen to thaw and prepare reagents. Some important guidelines are highlighted below.

ACTION	GUIDELINES Follow touchscreen prompts for specifics and timing
Thaw Reagents	 Thaw reagents as indicated on the touchscreen. Verify no precipitate is present.
	 Ensure that the correct thawing locations and temperatures are used.
	 During reagent thaw load the consumables following touchscreen prompts.
Prepare Ethanol	 Prepare 50 ml 80% Ethanol in Nuclease-free water and dispense in Ethanol Reservoir when prompted.
V(D)J Modules	• Thaw V(D)J Modules as prompted on the touchscreen.
	 After reagent thaw, invert rack holding Module tube strips and vortex V(D)J Modules 1 for 30 sec; verify no precipitate.
	 Confirm that there are no bubbles at the bottoms of any module tubes.
	 Centrifuge V(D)J Module 1 at 300 rcf for 1 min at 22°C.
	 Retrieve V(D)J Module 2 from 4°C thaw. DO NOT vortex. Invert-mix and centrifuge at 300 rcf for 1 min at 22°C.
Dual Index Plate TT Set A	 Vortex Dual Index Plate for 15 sec at maximum speed and centrifuge at 300 rcf for 1 min at 22°C.
Primer Mix 1 & 2	Vortex and centrifuge before loading.

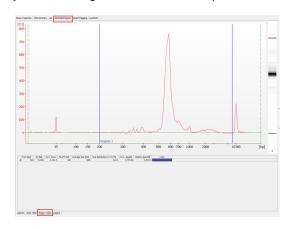

Confirm that there are no bubbles at the bottoms of any module tubes, Dual Index Plate wells, or Primer Mix tubes.

V(D)J Amplification QC & Quantification

- a. Follow the instruction on the touchscreen for V(D)J Amplification QC & quantification.
- **b.** Run 1 μ l sample at 1:5 dilution (Dilution Factor 5) on an Agilent Bioanalyzer High Sensitivity chip.

Samples of RNA-rich cells may require additional dilution in nuclease-free water. The number of distinct peaks may vary. Higher molecular weight product (2,000-9,000 bp) may be present. This does not affect sequencing.

Representative Trace - PBMCs amplified for TCR



- c. Determine yield for each sample using the example calculation below.
- d. Enter the V(D)J amplified product concentration (pg/ μ l) and the calculated input volume (μ l) on the touchscreen to proceed with V(D)J library construction.

EXAMPLE CALCULATION

i. Select Region

Under the "Electropherogram" view choose the "Region Table". Manually select the region of ~200 – ~9000 bp.

iii. Calculate

Concentration: 1773.07 pg/µl

Dilution Factor:

V(D)J Amplified Product Conc.

 $\frac{\text{Conc. (pg/µl)} \times \text{Dilution Factor}}{1000 \text{ (pg/ng)}} = \frac{1773.07 \times 5}{1000}$

= 8.9 ng/µl

for

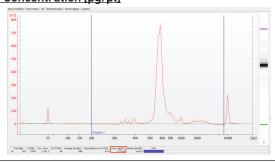
V(D)J Library Construction

Volume for 60 ng = $\frac{60 \text{ ng}}{8.9 (\text{ng/µl})} = \frac{6.7 \text{ µl}}{8.9 (\text{ng/µl})}$

• The sample input volume should be in the 5-22 µl range.

If <60* ng available, carry forward 22 μl sample (2-60 ng) into

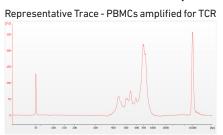
Example Calculation for Carrying Forward 60 ng Sample

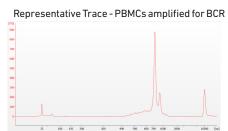

V(D)J Library Construction.

*Note that the intended sample amount differs from manual protocol to account for pipetting differences in automation.

DO NOT exceed a mass of 60 ng in the $22 \mu l$ carry forward volume.

ii. Note Concentration [pg/µl]


Alternate Quantification Methods


- PerkinElmer LabChip (See Appendix for representative traces)
- Agilent TapeStation

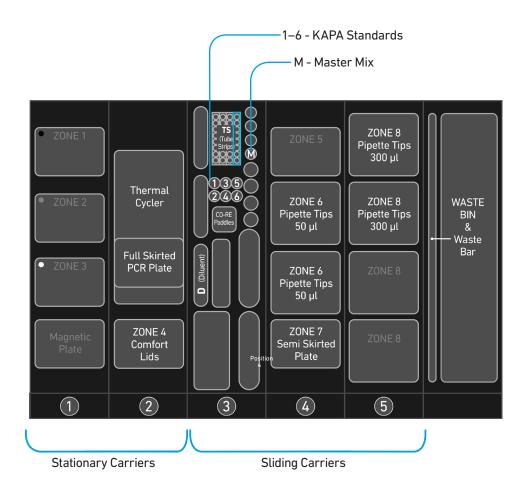
V(D)J Library Construction QC

Run sample on an Agilent Bioanalyzer High Sensitivity chip.

Representative Trace

Determine the average fragment size from the Bioanalyzer trace. This will be used as the insert size for library quantification.

Alternate QC Methods


- LabChip (See Appendix for representative traces)
- · Agilent TapeStation

Post Library Construction Quantification & Pooling

Deck Orientation — Library Quantification
Post Library Construction Quantification
Deck Orientation — Library Pooling
Library Pooling

Deck Orientation - Library Quantification

Library quantification using qPCR is recommended for accurate pooling and loading on sequencers. If the option is selected during gene expression run-setup, automated qPCR plate-setup can be run directly on Chromium Connect after library generation and final library QC. Alternatively, the option can be selected from the instrument home screen, at the user's convenience. Up to 8 samples can be quantified on a 96 well reaction plate, including duplicates for each sample. The minimum sample volume required is $25 \, \mu l$. Only $6 \, \mu l$ of the sample will be used for qPCR plate setup.

Gather Items & Reagents

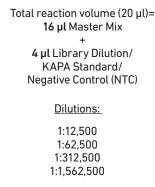
Follow prompts on the Chromium Connect touchscreen to gather the listed items and reagents for loading the Deck Carriers for Library Quantification.

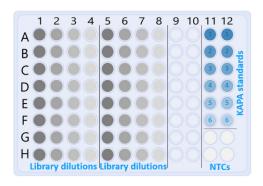
Gather the quantities specified for each of the items and reagents.

Item	Qty
Hamilton	
ComfortLid	1
50 μl CO-RE Pipette Tips, with filter (Black, Conductive)	2 racks
300 µl CO-RE Pipette Tips, with filter (Black, Conductive)	2 racks
60-ml Reagent Reservoir	1
Eppendorf	
96-well Semi Skirted Plate	1
Thermo Fisher Scientific	
2-ml Tube with Screw Cap	1
Bio-Rad	
96-well Hard-Shell Full Skirted Plate	1
Reagent	Qty
Qiagen Buffer EB	50 ml
Nuclease-free Water	1 ml
10% Tween-20	250 μl
Libraries (in an 8-tube strip)	1-8
KAPA Library Quantification Kit, thawed	
SYBR FAST Master Mix Primer Mix Standards	5 ml 1 ml 6

Post Library Construction Quantification

- Prepare reagents as prompted on the touchscreen.
- Vortex and centrifuge KAPA standards and libraries before use.
- Retrieve previously prepared Master Mix + Primer Mix OR


Add 1 ml Primer Mix to 5 ml SYBR FAST Master Mix.

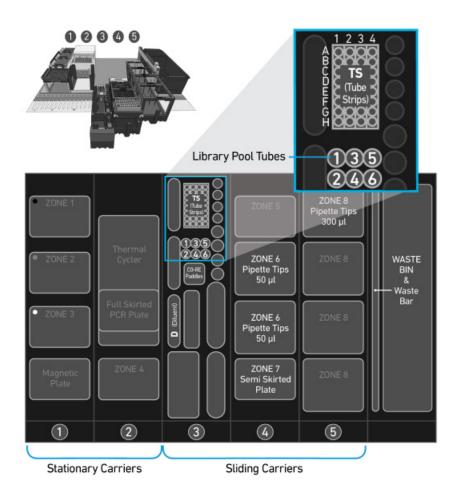

 Prepare specified Quantification Master Mix in the 2-ml tube using the guidance below.

# Sample	Master Mix + Primer Mix (μl)	Water (µl)	Total Vol (μl)
8	1305	435	1740
7	1200	400	1600
6	1095	365	1460
5	990	330	1320
4	885	295	1180
3	780	260	1040
2	675	225	900
1	570	190	760
	/olumes listed take into acco	ount volume for 6 st	andarde

Volumes listed take into account volume for 6 standards

- Follow the touchscreen prompts for loading, scanning, and executing the run.
- During the run, the following steps will be executed by the instrument:
 - -KAPA Master Mix transfer to the 96-well Hard Shell Full Skirted Plate (layout below)
 - -Diluent transfer to dilution plate
 - -Serial dilutions of libraries
 - -Addition of library dilutions, KAPA Standards, and negative controls to the plate

- After the run is completed, follow the unloading instructions on the touchscreen.
- Cap and store libraries at 4°C ≤72 h or -20°C ≤4 weeks.
- Remove Full Skirted Plate. Seal plate and centrifuge at 300 rcf for 1 min at 22°C.
- Follow the manufacturer's recommendations for qPCR-based quantification. For library quantification for sequencer clustering, determine the concentration based on average size (bp) derived from the Bioanalyzer/TapeStation trace.


Step	Temperature	Run Time		
1	95°C	00:05:00		
2	95°C	00:00:30		
3	60°C	00:00:45		
4	Go to Step 2, 29X (Total 30 cycles)			

• Resource:

Use the Chromium Connect Library Quantification Worksheet (CG000157) provided on the 10x Genomics Support website for calculating library concentrations.

Deck Orientation – Library Pooling

The libraries may be pooled on the Chromium Connect instrument and used for sequencing, taking into account the preferred cell numbers and per-cell read depth requirements for each library. Samples utilizing the same sample index should not be pooled together, or run on the same flow cell lane, as this would prevent correct sample demultiplexing. The Chromium Connect deck layout for Library Pooling is shown below.

Gather Items & Reagents

Follow prompts on the Chromium Connect touchscreen to gather the listed items and reagents for loading the Deck Carriers for Library Pooling.

Gather the quantities specified for each of the items and reagents.

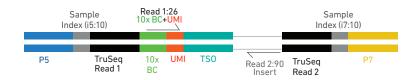
Item	Qty
Hamilton	
$50~\mu l$ CO-RE Pipette Tips, with filter (Black, Conductive)	1-2 rack
$300\mu l$ CO-RE Pipette Tips, with filter (Black, Conductive)	1-2 rack
Reagent Reservoir, 60 ml	1
Eppendorf	
96-well Semi Skirted Plate	1
Thermo Fisher Scientific	
0.5-ml Tube with Screw Cap	6
MicroAmp 8-Tube Strip, 0.2 ml	1-4
Reagent	Qty
Qiagen Buffer EB	50 ml
Libraries (in up to four 8-tube strips)	up to 32 libraries

Library Pooling

- Follow the touchscreen prompts for loading, scanning, and executing the run.
- · Briefly vortex and centrifuge libraries in the 8-tube strip.
- Confirm that there are no bubbles at the bottoms of any library tubes.
- Ensure a minimum 25 µl library volume is available in the tubes.
- After run is complete, follow touchscreen prompts to unload and store the libraries.
- Unload remaining items and clean as prompted on the touchscreen.
- Resource: Use the Chromium Connect Library Pooling Worksheet (CG000466)
 provided on the 10x Genomics Support website to calculate volumes to be pooled.
 The calculated volumes can be input into the instrument either manually, or via the CSV file generated from this workbook.

Sequencing

Sequencing Libraries


Chromium Single Cell V(D)J and 5' Gene Expression Dual Index libraries comprise standard Illumina paired-end constructs which begin with P5 and end with P7. These libraries include 16 bp 10x Barcodes encoded at the start of TruSeq Read 1. Sample index sequences are incorporated as the 10 bp i5 and i7 index reads.

TruSeq Read 1 and TruSeq Read 2 are standard Illumina sequencing primer sites used in paired-end sequencing of V(D)J and 5' Gene Expression libraries. Sequencing these libraries produce a standard Illumina BCL data output folder.

Chromium Single Cell V(D)J Dual Index Library

Chromium Single Cell 5' Gene Expression Dual Index Library

Illumina Sequencer Compatibility

The compatibility of the listed sequencers has been verified by 10x Genomics. Some variation in assay performance is expected based on sequencer choice. For more information about performance variation, visit the 10x Genomics Support website.

- MiSeq
- NextSeg 500/550/2000
- HiSeq 2500 (Rapid Run)
- HiSeq 3000/4000
- NovaSeq

Sample Indices

Each well of the Dual Index Kit TT Set A (PN-1000215) contains a mix of one unique i7 and one unique i5 sample index. If multiple samples are pooled in a sequence lane, the sample index name (i.e. the Dual Index plate well ID) is needed in the sample sheet used for generating FASTQs with "cellranger mkfastq".

If multiple libraries are pooled in a sequence lane, a separate sample index is needed with each library (see Tips & Best Practices).

Library Sequencing Depth & Run Parameters

Sequencing Depth	Minimum 5,000 read pairs per cell for V(D)J library Minimum 20,000 read pairs per cell for 5' Gene Expression library
Sequencing Type	Paired-end, Dual indexing
Sequencing Read	Read 1: 26 cycles i7 Index: 10 cycles i5 Index: 10 cycles Read 2: 90 cycles

Library Loading

Once quantified and normalized, V(D)J and 5' Gene Expression libraries should be denatured and diluted as recommended for Illumina sequencing platforms. Refer to Illumina documentation for denaturing and diluting libraries. Refer to the 10x Genomics Support website for more information.

Instrument	Loading Concentration (pM)	PhiX (%)
MiSeq	10	1
NextSeq 500	1.5	1
NovaSeq	150*/300	1
NextSeq 2000	650	1

^{*} Use 150 pM loading concentration for Illumina XP workflow.

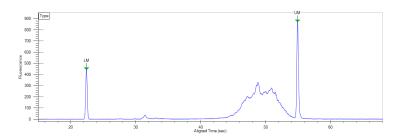
Library Pooling

V(D)J and 5' Gene Expression libraries may be pooled for sequencing, taking into account the differences in depth requirements between the pooled libraries. 5' Gene Expression libraries may be sequenced using enriched library parameters, however the cost of sequencing using enriched library parameters is higher.

Refer to Post Library Construction Quantification & Pooling chapter for library pooling on the Chromium Connect instrument.

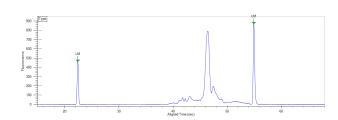
Library Pooling Examples:

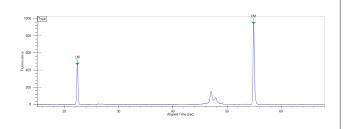
Libraries	Sequencing Depth (read pairs per cell)	Library Pooling Ratio
Example 1		
V(D)J library 5' Gene Expression library	5,000 20,000	1 4
Example 2		
V(D)J library 5' Gene Expression library	5,000 50,000	1 10

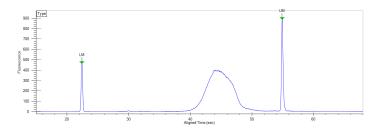

Appendix

LabChip Traces
Oligonucleotide Sequences

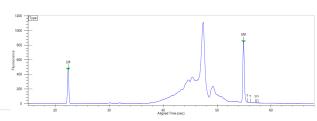
LabChip Traces

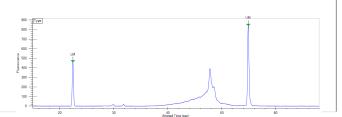

LabChip Traces DNA High Sensitivity Reagent Kit was used.


cDNA QC & Quantification


Post TCR Amplification QC

Post BCR Amplification QC





GEX Post Library Construction QC

Post V(D)J Library Construction QC (PBMCs amplified for TCR) Post V(D)J Library Construction QC (PBMCs amplified for BCR)

Alternate QC Method:

Qubit Fluorometer and Qubit dsDNA HS Assay Kit

Oligonucleotide Seguences Protocol steps correspond to the Chromium Next GEM Automated Single Cell 5' v2 protocol. **GEM-RT Incubation** Gel Bead Primer 10x UMI TSO Barcode 5'-CTACACGACGCTCTTCCGATCT-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTTTCTTATATrgrgrg-3' Poly-dT RT Primer Non-poly(dT) Poly(dT)VN PN-2000007 **GEM-RT Products** cDNA Insert Non-poly(dT) 10x UMI Barcode Automated Protocol Step - cDNA Amplification cDNA Primers Reverse Primer: Non-poly(dT) Forward Primer: Partial Read 1 5'-AAGCAGTGGTATCAACGCAGAG-3' 5'-CTACACGACGCTCTTCCGATCT-3' **Amplified Products** Amplified cDNA from poly-adenylated mRNA Read 1 10x UMI TSO Barcode Poly-dT RT Primer 5'-CTACACGACG 3'-GATGTGCTGCGAGAAGGCTAGA-N16-N10-AAAGAATATACCC-cDNA_Insert-CATGAGACGCAACTATGGTGACGAA-5' Automated Protocol Step -GEX Adaptor Ligation (for 5' Gene Expression (GEX) Library Construction) Adaptor Read 2 5'-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3' 3'-TCTAGCCTTCTCG-5' **Ligation Product** 10x UMI TSO Barcode 5'-GATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-N16-N10-TTTCTTATATGGG-cDNA_Insert-AGATCGGAAGACGACGTCTGAACTCCAGTCAC-3' 3'-CTAGATGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA-N16-N10-AAAGAATATACCC-cDNA_Insert-TCTAGCCTTCTCG-5' Automated Protocol Step -Sample Index PCR (for 5' Gene Expression (GEX) Library Construction) **Dual Indexing** Sample Partial Read 1 Sample Partial Read 2 **Dual Index TT** Index (i7) Set A PN-1000215 5'-AATGATACGGCGACCACCGAGATCT-N10-ACACTCTTTCCCTACACGACGCTC-3' 5'-CAAGCAGAAGACGGCATACGAGAT-N10-GTGACTGGAGTTCAGACGTGT-3' Sample Index PCR Product Sample Read 1 Read 2 Sample 10x UMI TS0 Insert Index (i5) Barcode 3'-TTACTATGCCGCTGGTGGCTCTAGATGTG-N10-TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA-N16-N10-AAAGAATATACCC-cDNA Insert-TCTAGCCTTCTCGTGTGCAGACTTGAGGTCAGTG-N10-

luman T Call Miss	Forward Primer:	Reverse Outer Primers:	
uman T Cell Mix v2	PCR Primer	5'-TGAAGGCGTTTGCACATGCA-3'	Outer Primer
N-2000242	5'-GATCTACACTCTTTCCCTACACGACGC-3'	5'-TCAGGCAGTATCTGGAGTCATTGAG-3	
uman B Cell Mix	Forward Primer: PCR Primer	Reverse Outer Primers: 5'-CAGGGCACAGTCACATCCT-3'	Outer Primer
v2 N-2000254	5'-GATCTACACTCTTTCCCTACACGACGC-3'	5'-TGCTGGACCACCATCTG'S 5'-GGTTTTGTTGTCACCCAGTCT-3' 5'-TGTGGACCTCCTGGAAGGCA-3' 5'-TGTGGGACTTCCACTG-3' 5'-TCTCGTAGTCTCGCTTGCTCAG-3'	
louse T Cell Mix	Forward Primer:	Reverse Outer Primers:	Outer Primer
v2 N-2000256	5'-GATCTACACTCTTTCCCTACACGACGC-3'	5'-TGTAGGCCTGAGGGTCCGT-3'	Outer Frimer
Mouse B Cell Mix v2 PN-2000258	Forward Primer: PCR Primer 5'-GATCTACACTCTTTCCCTACACGACGC-3'	Reverse Outer Primers: 5'-TCAGCACGGGACAAACTCTTCT-3' 5'-GCAGGAGACACACACTCTTCTCCA-3' 5'-AACTGGCTGCTCATGGTGT-3' 5'-TGGTGCAAGTGTGGTGGTG-3' 5'-TGGTCACTTGGCTGGTGGTG-3' 5'-CACTTGGCAGGTGAACTGTTTTCT-3' 5'-AACCTTCAAGGATGCTCTTGGGA-3' 5'-GGACAGGGATCCAGAGTTCCA-3' 5'-AGGTGACGGTCTGACTTGGC-3' 5'-GCTGGACAGGGCTCCATAGTT-3' 5'-GGCACCTTGTCCAATCATGTTCC-3' 5'-ATGTCGTTCATACTCGTCCTTGGT-3'	Outer Primer
Automated Protoco	ol Step – V(D)J Amplification 2		
Human T Cell Mix 2 v2 PN-2000246	Forward Primer: PCR Primer 5'-GATCTACACTCTTTCCCTACACGACGC-3'	Reverse Inner Primers: 5'-AGTCTCTCAGCTGGTACACG-3' 5'-TCTGATGGCTCAAACACAGC-3'	Inner Primer
Human B Cell Mix 2 v2 PN-2000255	Forward Primer: PCR Primer 5'-GATCTACACTCTTTCCCTACACGACGC-3'	Reverse Inner Primers: 5'-GGGAAGTTTCTGGCGGTCA-3' 5'-GGTGGTACCCAGTTATCAAGCAT-3' 5'-GTGTCCCAGGTCACCATCAC-3' 5'-TCCTGAGGACTGTAGGACAGC-3' 5'-CACGCTGCTCGGCCGC-3' 5'-GCGTTATCCACCTTCCACTGT-3'	Inner Primer
Mouse T Cell Mix 2 v2 PN-2000257	Forward Primer: PCR Primer 5'-GATCTACACTCTTTCCCTACACGACGC-3'	Reverse Inner Primers: 5'-AGTCAAAGTCGGTGAACAGGCA-3' 5'-GGCCAAGCACACGAGGGTA-3'	Inner Primer
Mouse B Cell Mix 2 v2 PN-2000259	Forward Primer: PCR Primer 5'-GATCTACACTCTTTCCCTACACGACGC-3'	Reverse Inner Primers: 5'-TACACACCAGTGTGGCCTT-3' 5'-CAGGCCACTGTCACACCCACT-3' 5'-CAGGTCACATTCATCGTGCCG-3' 5'-GAGGCCAGCACAGTGACCT-3' 5'-GCAGGGAAGTTCACAGTGCT-3' 5'-TGCTGAGTGGCTAGGTACTTG-3' 5'-TGCTGACCAGGCATCC-3' 5'-AGGTCACGGAGGAACCAGTTG-3' 5'-GGCATCCCAGTGTCACCGA-3'	Inner Primer

V(D)J Amplified Product

5'-GATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-N16-N10-TTTCTTATATGGG-cDNA_Insert-Inner_Primer-3'

3'-CTAGATGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA-N16-N10-AAAGAATATACCC-cDNA_Insert-Inner_Primer-5'

Automated Protocol Step - Adaptor Ligation (for V(D)J Library Construction)

Adaptor (Read 2)

5'-GATCGGAAGAGCACACGTCFEAAACTCCAGTCAC-3'

3'-TCTAGCCTTCTCG-5'

 $5'-GATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-N16- \\ N10-TTTCTTATATGGG-cDNA_Insert-AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3'$

3'-CTAGATGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGA-N16-N10-AAAGAATATACCC-cDNA_Insert-TCTAGCCTTCTCG-5'

Automated Protocol Step - Sample Index PCR (for V(D)J Library Construction)

5'-AATGATACGGCGACCACCGAGATCTACAC-N10-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-N16-N10-TTTCTTATATGGG-inser-AGATCGGAAGACACGTCTGAACTCCAGTCAC-N10-ATCTCGTATGCCGTCTTCTGCTTG-3'
3'-TTACTATGCCGCTGGTGGCTCTAGATGTG-N10-TGTGAGAAAAGGGATGTGCTGCGGAAGAGCCAAC-5'