

Sample Prep User Guide | CG000595 | Rev A

Reagent Assembly, Sample Labeling & Flow Sorting

For Barcode Enabled Antigen Mapping (BEAM)

For use with:

Chromium Single Cell 5' BEAM Core Kit, PE, Set A 128 rxns PN-1000539

Chromium Human MHC Class I A0201 Monomer Kit, 32 rxns PN-1000542

Chromium Human MHC Class I A1101 Monomer Kit, 32 rxns PN-1000543

Chromium Human MHC Class I B0702 Monomer Kit, 32 rxns PN-1000544

Chromium Human MHC Class I A2402 Monomer Kit, 32 rxns PN-1000545

Chromium Mouse MHC Class I H2Kb Monomer Kit, 32 rxns PN-1000546

Notices

Document Number

CG000595 | Rev A

Legal Notices

© 2022 10x Genomics, Inc. (10x Genomics). All rights reserved. Duplication and/or reproduction of all or any portion of this document without the express written consent of 10x Genomics, is strictly forbidden. Nothing contained herein shall constitute any warranty, express or implied, as to the performance of any products described herein. Any and all warranties applicable to any products are set forth in the applicable terms and conditions of sale accompanying the purchase of such product. 10x Genomics provides no warranty and hereby disclaims any and all warranties as to the use of any third-party products or protocols described herein. The use of products described herein is subject to certain restrictions as set forth in the applicable terms and conditions of sale accompanying the purchase of such product. A non-exhaustive list of 10x Genomics' marks, many of which are registered in the United States and other countries can be viewed at: www.10xgenomics.com/trademarks. 10x Genomics may refer to the products or services offered by other companies by their brand name or company name solely for clarity, and does not claim any rights in those third-party marks or names. 10x Genomics products may be covered by one or more of the patents as indicated at: www.10xgenomics.com/patents. The use of products described herein is subject to 10x Genomics Terms and Conditions of Sale, available at www.10xgenomics.com/legal-notices, or such other terms that have been agreed to in writing between 10x Genomics and user. All products and services described herein are intended FOR RESEARCH USE ONLY and NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Instrument & Licensed Software Updates Warranties

Updates to existing Instruments and Licensed Software may be required to enable customers to use new or existing products. In the event of an Instrument failure resulting from an update, such failed Instrument will be replaced or repaired in accordance with the 10x Limited Warranty, Assurance Plan or service agreement, only if such Instrument is covered by any of the foregoing at the time of such failure. Instruments not covered under a current 10x Limited Warranty, Assurance Plan or service agreement will not be replaced or repaired.

Support

Email: support@10xgenomics.com 10x Genomics 6230 Stoneridge Mall Road Pleasanton, CA 94588 USA

Document Revision Summary

Document Number

CG000595 | Rev A

Title

Reagent Assembly, Sample Labeling & Flow Sorting for Barcode Enabled Antigen Mapping (BEAM)

Revision

Rev A

Revision Date

December 2022

Table of Contents

Introduction	5
Objective	6
Additional Kits, Reagents & Equipment	7
Recommended Pipette Tips	8
Tips & Best Practices	9
Barcode Enabled Antigen Mapping of Antigen-Specific BCRs (BEAM-Ab) Protocol: Assembly, Labeling & Flow Sorting	14
Reagent Kits	15
Protocol Steps & Timing	16
Get Started	17
Step 1: Pre-screen Antigens	18
Step 2: Test Multiple Antigens	21
Step 2.1: BEAM-Ab Assembly Preparation	21
Step 2.2: Sample Labeling	23
Step 2.3: Flow Sorting	25
Barcode Enabled Antigen Mapping of Antigen-Specific TCRs (BEAM-T) Protocol: Assembly, Labeling & Flow Sorting	27
Reagent Kits	28
Protocol Steps & Timing	31
Get Started	32
Step 1: Pre-screen Peptides	35
Step 2: Test Multiple Peptides	39
Step 2.1: BEAM-T Assembly Preparation	39
Step 2.2: Sample Labeling	43
Step 2.3: Flow Sorting	45
Appendix	47
A1. Antigen Pre-screening Analysis for BEAM-Ab	48
A2. Peptide Pre-screening Analysis for BEAM-T	49
A3. BEAM-Ab Antibody Panels for Flow Sorting	50
A4. BEAM-T Antibody Panels for Flow Sorting	51
A5. FMO Controls	52
A6. References	52

Introduction

Objective

Additional Reagents, Kits, & Equipment

Recommended Pipette Tips

Objective

Chromium Single Cell 5' Barcode Enabled Antigen Mapping (BEAM) enables multiplexed screening of antigen targets to match unique antigens with their corresponding B-cell receptors (BCRs) and T-cell receptors (TCRs), allowing rapid discovery of antigen-specific BCRs (BEAM-Ab) and TCRs (BEAM-T), respectively.

Before starting with the BEAM workflow, appropriate antigens and peptides must be obtained. Chromium Single Cell 5' BEAM Core Kit, PE, Set A 128 rxns PN-1000539 provides cell labeling and reagent assembly solution through the use of a set of 16 unique BEAM Conjugates, each composed of a streptavidin, a fluorophore molecule (Phycoerythrin, PE), and a Feature Barcode oligonucleotide. The antigens (for BEAM-Ab) or peptides (for BEAM-T) are first assembled with BEAM Conjugates to prepare BEAM-Ab or BEAM-T Assemblies, respectively. BEAM-T Assembly also requires MHC monomers (part of 10x Genomics Chromium Human/Mouse MHC Class I Monomer Kits). These assembled reagents are then used to label individual cells and the labeled cells are sorted through flow cytometry to collect antigen-specific B or T cells prior to loading onto a 10x Genomics chip.

This document provides guidance for preparing BEAM assemblies, cell labeling, and flow sorting for both BEAM-Ab and BEAM-T workflows. Cells prepared using this document can be used as input into the relevant Chromium Single Cell Immune Profiling Solutions User Guide with Feature Barcode technology (see References).

Barcode Enabled Antigen Mapping of Antigen-Specific BCRs (BEAM-Ab) – Sample Preparation Overview

Barcode Enabled Antigen Mapping of Antigen-Specific TCRs (BEAM-T) – Sample Preparation Overview

Additional Kits, Reagents & Equipment

The items in the tables below have been tested by 10x Genomics and perform optimally with the Chromium Single Cell 5' Barcode Enabled Antigen Mapping (BEAM) protocols. Substituting materials may adversely affect system performance. This list does not include standard laboratory equipment, such as water baths, pH meters, freezers, etc.

Item	Description			Supplier	Part Number (US)
Plastics					
0.2 ml PCR	PCR Tubes 0.2 ml 8-tube stripsChoose eTempAssure PCR 8-tube stripEppendorScientific		either	Eppendorf	951010022
8-tube strips			orf, USA ic or Thermo	USA Scientific	1402-4700
	MicroAmp 8-Tube Strip, 0.2 ml MicroAmp 8 -Cap Strip, clear	Fisher S PCR 8-t	Scientific cube strips.	Thermo Fisher Scientific Thermo Fisher Scientific	N8010580 N8010535
1.5-ml tubes	DNA LoBind Tubes 1.5 ml			Eppendorf	22431005
2-ml tubes	DNA LoBind Tubes 2.0 ml			Eppendorf	22431048
15-ml tubes	Corning 15 ml centrifuge tubes	Choose for reac	either tubes gent & buffer	Corning	CLS430791
50-ml tubes	Corning 50 ml centrifuge tubes	prepara	ation.	Corning	CLS430829
Kits & Reagen	ıts				
Sterile 1X PBS	Phosphate-Buffered Saline without C Or any equivalent sterile PBS	Calcium	& Magnesium	Corning	21-040-CM
Nuclease-free water	Molecular Grade Nuclease-free Water			Thermo Fisher Scientific	AM9937
FBS Fetal Bovine Serum, qualified, heat inactivated		Thermo Fisher Scientific	16140071		
	Avantor Seradigm Premium Grade Fe	VWR	97068-085		
FcX	Human TruLabel FcX (Fc Receptor Blocking Solution) TruStain FcX™ PLUS (anti-mouse CD16/32) Antibody			Biolegend Biolegend	422301 156603
Total-Seq C	TotalSeq [™] Antibody Oligonucleotide Optional	e Conjug	Biolegend	-	
Antibodies	See Example Antibody Panels		-	-	
Viability dye	Invitrogen eBioscience 7-AAD Viabili	ity Stai	ning Solution	Invitrogen	00699350
BSA	UltraPure Bovine Serum Albumin (BS MACS BSA Stock Solution	SA, 50 r	mg/ml)	Thermo Fisher Scientific Miltenyi Biotec	AM2616 130-091-376
Cell Counting					
Label	Trypan Blue Label (0.4%)		Choose counter	Thermo Fisher Scientific	T10282
Cell counter & slides	Countess II FL Automated Cell Counter Countess 3 FL Automated Cell Counter Countess Cell Counting Chamber Slides		based on availability & preference.	Thermo Fisher Scientific Thermo Fisher Scientific Thermo Fisher Scientific	AMQAF1000 A49866 C10228
Equipment					
Vortex	Vortex Mixer			VWR	10153-838
Centrifuge	Refrigerated Eppendorf Centrifuge Or any equivalent centrifuge			Millipore-Sigma	5427R or 5424R
Sorter	MA900 Multi-Application Cell Sorter Or any equivalent cell sorter		Sony	MA900	

For some items, a number of vendor options are listed. Choose item based on availability and preference. Refer to the manufacturer's website for regional part numbers.

Pipette Tips

Recommended 10x Genomics recommends using only validated emulsion-safe pipette tips for all Single Cell protocols. Rainin pipette tips have been extensively validated by 10x Genomics and are highly recommended for all single cell assays. If Rainin tips are unavailable, any of the listed alternate pipette tips validated by 10x Genomics may be used.

Supplier	Description	Part Number (US)					
Recommended Pipettes & Pipette tips							
Rainin (pipettes)	Pipet-Lite Multi Pipette L8-50XLS+	17013804					
	Pipet-Lite Multi Pipette L8-200XLS+	17013805					
	Pipet-Lite Multi Pipette L8-10XLS+	17013802					
	Pipet-Lite Multi Pipette L8-20XLS+	17013803					
	Pipet-Lite LTS Pipette L-2XLS+	17014393					
	Pipet-Lite LTS Pipette L-10XLS+	17014388					
	Pipet-Lite LTS Pipette L-20XLS+	17014392					
	Pipet-Lite LTS Pipette L-100XLS+	17014384					
	Pipet-Lite LTS Pipette L-200XLS+	17014391					
	Pipet-Lite LTS Pipette L-1000XLS+	17014382					
Rainin (pipette tips)	Tips LTS 200UL Filter RT-L200FLR	30389240					
	Tips LTS 1ML Filter RT-L1000FLR	30389213					
	Tips LTS 20UL Filter RT-L10FLR	30389226					
Alternate Recommendation	ons (If Rainin pipette tips are unavailable, any of the listed pipette tips m	nay be used)					
Eppendorf (pipettes)	Eppendorf Research plus, 8-channel, epT.I.P.S. Box, 0.5 – 10 μL	3125000010					
	Eppendorf Research plus, 8-channel, epT.I.P.S. Box, 10 – 100 μL	3125000036					
	Eppendorf Research plus, 8-channel, epT.I.P.S. Box, 100 – 300 μL	3125000052					
	Eppendorf Research plus, 1-channel, epT.I.P.S.® Box, 0.1 – 2.5 μL	3123000012					
	Eppendorf Research plus, 1-channel, epT.I.P.S.® Box, 0.5 – 10 μL	3123000020					
	Eppendorf Research plus, 1-channel, epT.I.P.S.® Box, 2 – 20 μL	3123000039					
	Eppendorf Research plus, 1-channel, epT.I.P.S.® Box, 2 – 200 μL	3123000055					
	Eppendorf Research plus, 1-channel, epT.I.P.S.® Box, 100 – 1000 μL	3123000063					
Eppendorf (pipette tips)	ep Dualfilter T.I.P.S., 2-20 µL	0030078535					
Compatible with Eppendorf	ep Dualfilter T.I.P.S., 2-200 µL	0030078551					
pipettes of ity	ep Dualfilter T.I.P.S., 2-1,000 μL	0030078578					
Labcon*	ZAP SLIK 20 μL Low Retention Aerosol Filter Pipet Tips for Rainin LTS	4-1143-965-008					
	ZAP SLIK 200 μL Low Retention Aerosol Filter Pipet Tips for Rainin LTS	4-1144-965-008					
	ZAP SLIK 1000 μL Low Retention Aerosol Filter Pipet Tips for Rainin LTS	4-1145-965-008					
Biotix*	xTIP4 Racked Pipette Tips, Rainin LTS Pipette Compatible, 0.1-20uL	63300931					
	xTIP4 Racked Pipette Tips, Rainin LTS Pipette Compatible, 200uL	63300001					
	xTIP4 Racked Pipette Tips, Rainin LTS Pipette Compatible, 1000uL	63300003					

*Compatible with Rainin pipettes

Tips & Best Practices

Sample Prep User Guide	Assembly, Lab	eling & Flow Sortin	g Tips & Best Practices
------------------------	---------------	---------------------	---------------------------

Icons	TIPS		BEAM-Ab	BEAM-T	
	Tips & Best Practices section includes additional guidance	Signifies critical step requiring accurate execution	Guidance/steps for Barcode Enabled Antigen Mapping of antigen-specific BCRs (BEAM-Ab)	Guidance/steps for Barcode Enabled Antigen Mapping of antigen-specific TCRs (BEAM-T)	
Plastics	• Use recomme assembly and reagents, buff	nded plastic con labeling as some fers, and solution	sumables when perfe e plastics can introdu is, leading to microfi	orming reagent ice fibers into uidic failures.	
General Reagent Handling	 Fully thaw and thoroughly pipette mix reagents before use. Keep all reagents on ice during setup and use. Promptly move reagents back to the recommended storage after use. BEAM Conjugates are light sensitive. When transferring them into clear tubes for assembly, cover the tubes with an aluminum foil and keep in the dark. 				
Pipette Tips & Calibration	Follow manufUse only reco	facturer's calibra mmended pipett	tion and maintenand	ce schedules.	
Centrifugation Conditions	 Centrifugatio Larger or frag Use of swingi Post-sorting, on needed. 	n speed and time ile cell types ma ng-bucket rotor i cells should be ce	e depends upon the s y require slower cent s recommended for l entrifuged at 150 rcf	ample type. trifugation speeds. higher cell recovery. for 10 min at 4°C , if	
Pre-enrichment of B and T Cells	 If the percent recommended T cells) to man sorting time. Use a negative with BEAM resonance Examples of s Human CD8 T Mouse CD8 T Isolation Kit I 	age of T or B cell d to enrich the sa ximize the use of e selection kit for eagents. ome negative sele C Cells Kit (Invitro Cells Kit (Invitro I Human Kit (Mil	s in the starting sam ample for the cell typ f BEAM Conjugate ar c pre-enrichment to a ection kits include Dy ogen PN-11348D), Dyn gen PN-11417D), or Ma tenyi Biotec PN-130-0	ple is low, it is e of interest (B or nd to decrease flow woid interference ynabeads Untouched nabeads Untouched ACS Miltenyi B Cell 091-151).	
Sample Types & Viability	 This protocol T and B cells is lymphocytes. High viability viability for Basorting, the vi 	has been demon from human PBA samples give bes arcode Enabled A ability should be	strated on human Pl ACs, mouse splenocy st results. Use sample Antigen Mapping (BE. >90%.	BMCs, enriched tes, and mouse es with at least 70% AM) workflow. After	

BEAM-Ab Assembly	• BEAM-Ab Assembly preparation involves combining a biotinylated antigen with a unique BEAM Conjugate.				
BEAM-Ab	• One Negative Control Assembly should also be set up per sample.				
	• BEAM-Ab Assemblies should also be quenched before pooling and cell labeling.				
Antigen Sourcing &	• Use a high-quality biotinylated antigen for BEAM-Ab assembly.				
Pre-screening BEAM-Ab	• Note the molecular weight and concentration of each antigen before proceeding with the assembly.				
	• Up to 15 different target antigens (and one negative control) can be tested using the BEAM-Ab workflow.				
	• Antigen can vary in size from 10 - 200 kDa. Consult Barcode Enabled Antigen Mapping (BEAM) Experimental Planning Guide (Document CG000596) for further details on antigen specifications.				
Antigen Pre-screening	 Pre-screen each biotinylated antigen individually before starting reagent assembly to determine the antigen quality. 				
BEAM-Ab	During antigen pre-screening:				
	» A non-experimental sample can be used.				
	» Quenching is not needed.				
	» DO NOT pool the assemblies.				
	» Label sample with a unique assembly.				
	» Once labeled, proceed to flow cytometry analysis without sorting.				
Negative Control	• One Negative Control Assembly is needed per sample.				
Assembly BEAM-Ab	• In the negative control BEAM-Ab assembly, 1X PBS is used in the place of antigen.				

BEAM-T Assembly	 BEAM-T Assembly preparation involves combining a peptide, an appropriate MHC-matched monomer and a unique BEAM Conjugate. BEAM-T Assemblies should also be quenched before pooling.
	One Negative Control Peptide Assembly should also be set up per monomer.
MHC Monomer & Target Peptide	 Each Chromium Human/Mouse MHC Class I Kit includes a biotinylated MHC monomer.
REAM T	• Use appropriate, high-quality MHC monomer-matched peptide.
DEAIM*I	 Peptide should be 9-12 amino acids long. Consult Barcode Enabled Antigen Mapping (BEAM) Experimental Planning Guide (Document CG000596) for further details on peptide specifications.
	• Up to 15 different target peptides (and one Negative Control Peptide) can be tested using the BEAM-T workflow.
	 During assembly, use the appropriate matched monomer.
	• More than one monomer can be used in one experiment. In this case, a separate negative control assembly would be required for each peptide.
Negative Control Peptide	• Each Chromium Human/Mouse MHC Class I Kit includes a monomer- matched Negative Control Peptide.
BEAM-T	 It is used to set up a Negative Control Peptide Assembly by combining Negative Control Peptide, appropriate MHC monomer, and unique BEAM Conjugate. Negative control assembly is required for downstream antigen specificity calculations in Cell Ranger.
	• The Negative Control Peptide is also added to all the assemblies during quenching to ensure any improperly loaded MHC monomers are loaded before multiplexing.
	• Use the appropriate monomer-matched Negative Control Peptide for Negative Control Assembly and for quenching.
Peptide Pre-screening	• Pre-screen each peptide individually before proceeding with testing multiple peptides to determine the peptide quality and proper loading of the MHC monomer.
BEAM-T	During peptide pre-screening:
	» A non-experimental sample can be used.
	» Quenching is not needed.
	» DO NOT pool the assemblies.
	» Label sample with a unique assembly.
	» Once labeled, proceed to flow cytometry analysis without sorting.

Antibody Panels for Flow Sorting

- Marker panels for flow sorting should contain the following components:
 - » **Markers for Desired Cells:** Antibodies specifically labeling T cells (BEAM-T) or B cells (BEAM-Ab) should be included.
 - » **Markers for Undesired Cell Lineages:** Additionally, markers for cells that are not desired should also be included so that these cell populations can be excluded during sorting.
 - » **Live Dead Marker**: These markers selectively label dead cells, allowing the sorter to distinguish between live and dead cell populations. They function by entering dead cells (whose cell membranes are compromised) and binding to DNA or free amine groups. The Barcode Enabled Antigen Mapping assay was validated with 7AAD.
- Phycoerythrin (PE) is the fluorophore for enriching BEAM⁺ antigenspecific cells, so the antibodies must be selected to work with or compensated appropriately to work with PE.
- Examples of human and mouse antibody panels for flow sorting are provided in the Appendix.
- Consult the Technical Note Barcode Enabled Antigen Mapping (BEAM) Flow Cytometry Guidelines (Document CG000598) for further guidance on antibody panels.
- Same antibody panels can be used for flow cytomtery when prescreening antigens and peptides.
- Use dim fluorophores with abundant markers and use bright fluorophores with dim markers. Additional antibodies can be added as long as they do not interfere with PE.
- Use a PE based antibody to build compensation controls.

Barcode Enabled Antigen Mapping of Antigen-Specific BCRs (BEAM-Ab) Protocol:

Assembly, Labeling & Flow Sorting

Reagent Kits Protocol Steps & Timing Get Started Step 1: Pre-screen Antigen Step 2: Test Multiple Antigens Step 2.1: BEAM-Ab Assembly Preparation Step 2.2: Sample Labeling Step 2.3: Flow Sorting

CG000595 | Rev A

Reagent Kits

For use with the Chromium Next GEM Single Cell 5' Gene Expression with Feature Barcode technology for Barcode Enabled Antigen Mapping (BEAM)

Refer to SDS for handling and disposal information

Chromium Single Cell 5' BEAM Core Kit, PE, Set A 128 rxns PN-1000539

Ch Sii 12 PN Sto	romium ngle Cell 5' BEAM Core K 8 rxns, Module 1 I-1000539 ore at -20°C	it, P	E, Set A	Chromium Single Cell 5' BEAM Core K 128 rxns, Module 2 PN-1000539 <i>Store at -20°C</i>	(it, PE #	, Set A PN
	BEAM Conjugate 1, PE	1	2000774	BEAM Conjugate 9, PE	1	2000782
	BEAM Conjugate 2, PE	1	2000775	BEAM Conjugate 10, PE	E 1	2000783
	BEAM Conjugate 3, PE	1	2000776	BEAM Conjugate 11, PE	E 1	2000784
	BEAM Conjugate 4, PE	2	2000777	BEAM Conjugate 12, PE	E 2	2000785
	BEAM Conjugate 5, PE	1	2000778	BEAM Conjugate 13, PE	E 1	2000786
	BEAM Conjugate 6, PE	1	2000779	BEAM Conjugate 14, PE	E 1	2000787
	BEAM Conjugate 7, PE	1	2000780	BEAM Conjugate 15, PE	E 1	2000788
	BEAM Conjugate 8, PE	1	2000781	BEAM Conjugate 16, PE	E 1	2000789
	Quenching Reagent	1	2000790	Quenching Reagent	1	2000790
			10x			10×

Cap colors for BEAM Conjugates 1-16 tubes may vary depending on the lot. Verify reagent using the part number.

Protocol Steps & Timing

The table below provides an overview of the Barcode Enabled Antigen Mapping of antigen-specific BCRs (BEAM-Ab) protocol steps and timing.

	Steps	Timing	Stop & Store
Day 1	Step 1. Pre-screen Antigens*		
	(Includes preparing unquenched BEAM-Ab Assembly, sample labeling, and flow cytometric analysis)	2-3 h	
Day 2	Day 2 Step 2. Test Multiple Antigens		
	Step 2.1. BEAM-Ab Assembly Preparation	~1 h 570P	4°C ≤24 h
	Step 2.2. Sample Labeling	~1 h	
	Step 2.3. Flow Sorting	2-3 h	

*Antigen pre-screening is required to determine the antigen quality and therefore multiplexing compatibility. This step can be skipped if the antigen is already pre-screened.

Keep samples on ice following sorting. Proceed **immediately** to the Chromium Single Cell Immune Profiling Solutions User Guide with Feature Barcode technology (see References).

Get Started

Cap colors for BEAM Conjugates 1-16 tubes may vary depending on the lot. Verify reagent using the part number.

	Item	10x PN	Preparation & Handling	Storage
	Place on Ice			
•	BEAM Conjugate 1-16, PE	2000774 - 2000789	Thaw at room temperature. Vortex, centrifuge briefly, pipette mix 5x (pipette set at 20 µl), and place on ice.	-20°C
•	Quenching Reagent	2000790	Thaw at room temperature. Vortex, verify no precipitate, and centrifuge briefly. Place on ice.	-20°C
	Biotinylated Antigen Use appropriate, high-quality biotinylated antigen in the size range of 10 - 200 KDa.	_	Note the stock concentration and molecular weight of the antigen. Manufacturer's recommendations.	_
	BEAM-Ab Antibody Panel for Flow Sorting See Appendix for examples.	-	Manufacturer's recommendations.	_
	7AAD (7-Aminoactinomycin D)	—	Manufacturer's recommendations.	4°C
	Fc Receptor Blocking Solution Human/Mouse	_	Manufacturer's recommendations.	_
	TotalSeq [™] -C Antibody Oligonucleotide Conjugates Optional For simultaneous cell surface protein labeling	_	Manufacturer's recommendations.	_
	Obtain			
	Sterile 1X PBS	—	—	4°C
	BSA Optional For preparing PBS + 1% BSA for resuspending lyophillized antibody- oligonucleotide conjugates	_	_	4°C
	Vortex	_	_	—
	FBS	_	_	4°C

Step 1: Pre-screen Antigens

Pre-screen each antigen before starting BEAM-Ab workflow to determine antigen quality. Poor quality antigen can alter the PE signal during flow sorting. This step only needs to be performed once. For antigens already screened, proceed directly to step 2. Pre-screening does not require a positive signal and thus can be performed on non-experimental samples.

For the purpose of pre-screening the antigens, the following two unique BEAM-Ab Assemblies should be prepared:

- i. Target Antigen Assembly
- ii. Negative Control Assembly

BEAM-Ab Assembly for Pre-screening

a. Record the stock concentration and molecular weight of each antigen. Use the Barcode Enabled Antigen Mapping (BEAM) Workbook for BEAM-Ab Assembly (Document CG000597) to determine the volume of the antigen required for each assembly.

b. Target Antigen Assembly

Add reagents in the order listed. Pipette mix and keep on ice in the dark.

BEAM Assembly		PN	For 1 BEAM-Ab Assembly (μl)		
	Sterile 1X PBS	-	Variable		
	BEAM Conjugate 1-16, PE	2000774 - 2000789	2.0		
	Biotinylated Antigen*	-	Variable		
	Total	-	40.0		

*The volume of antigen required is dependent on the antigen stock concentration and molecular weight. This volume can be calculated using the Barcode Enabled Antigen Mapping (BEAM) Workbook for BEAM-Ab Assembly (Document CG000597). Add an appropriate volume of PBS based on the amount of added antigen to achieve the stated total volume.

c. Negative Control Assembly

Add reagents in the order listed. Pipette mix and keep on ice in dark. Use a unique BEAM Conjugate for Negative Control Assembly.

BEAM Assembly	PN	For 1 BEAM-Ab Assembly (µl)
 Sterile 1X PBS	-	38.0
BEAM Conjugate 1-16, PE	2000774 - 2000789	2.0
Total	-	40.0

- STOP
- **d.** Incubate for **30 min** in the dark on **ice** or store the BEAM-Ab Assemblies for up to **24 h** at **4°C** in the dark.
- e. To minimize bubble formation, centrifuge the assemblies at **2,500 rcf** for **5 min** at **4°C**.
- **f.** Maintain the assembly at **4°C** in the dark and proceed **immediately** to the next step.

Sample Labeling

This protocol was demonstrated using $0.2-1 \ge 10^6$ cells. Wash and thaw cells according to the appropriate 10x Genomics Demonstrated Protocol for the cell type being prepared.

- **a.** Prepare PBS + 2% FBS and keep on ice.
- **b.** Prepare B cell antibody panel for flow cytometry at appropriate dilution and keep on ice. See Appendix for examples panels for human and mouse.
- **c.** Dispense 0.2-1 x 10⁶ cells each into a new 15-ml centrifuge tube for each Target Antigen Assembly or Negative Control Assembly.
- d. Centrifuge cells at **300 rcf** for **5 min** at **4°C**.
- e. Remove the supernatant.
- **f.** Resuspend each pellet in **90 µl** chilled PBS + 2% FBS and keep on ice.
- **g.** Add **10 μl** human/mouse Fc Receptor Blocking Solution, pipette mix, and incubate for **10 min** on ice.
- **h.** Add appropriate volume of B cell antibody panel for flow cytometry to the cells and pipette mix. The volume will depend on the number of cells.
- **i.** Add **6.4 μl** of appropriate BEAM-Ab Assembly to the cells in each tube. Using a P1000 pipette, gently mix 5x.
- **j.** Incubate for **30 min** on **ice** in the dark and gently pipette mix cells every **10 min**.

- k. Add 3.5 ml chilled PBS + 2 % FBS. Gently pipette mix 5x.
- **1.** Centrifuge at **300 rcf** for **5 min** at **4°C**.
- **m.** Remove the supernatant.
- **n. Repeat** k m 2x for a total of three washes.
- o. Resuspend cells in 100 µl chilled PBS + 2% FBS. Pipette mix 5x.
- **p.** Add **0.5 µl** 7AAD per **100 µl** sample.
- **q.** Maintain samples on ice in the dark and proceed to flow cytometry.

Flow Cytometry

- **a.** Prepare appropriate compensation controls. Compensation controls should be prepared fresh for every experiment. For further details, consult Technical Note Barcode Enabled Antigen Mapping (BEAM) Flow Cytometry Guidelines (Document CG000598).
- **b.** Prepare fluorescence minus one (FMO) controls. See Appendix for details.
- **c.** Gate on lymphocytes by size (scatter), single cells, live cells (e.g. 7AAD negative), lineage negative, CD19⁺ cells, and then analyze dual positive PE⁺ CD19⁺ cells.
- **d.** Analyze the results and proceed with step 2 if the antigen passes the pre-screening. See Appendix for guidance on pre-screening analysis for BEAM-Ab.

BEAM-Ab

Step 2: Test Multiple Antigens

Step 2.1: BEAM-Ab Assembly Preparation

A Negative Control Assembly is critical for calculating antigen specificity scores. This section provides guidance on testing multiple antigens in a sample. A downloadable workbook (Barcode Enabled Antigen Mapping (BEAM) Workbook for BEAM-Ab Assembly, Document CG000597) for the calculations described in this section is also available on the 10x Genomics Support website and can be used concurrently with this user guide.

For the purpose of testing multiple antigens, the following two types of BEAM-Ab Assemblies should be prepared:

- One or more Target Antigen Assemblies
- Negative Control Assembly

a. Record the stock concentration and molecular weight of each antigen. Use the Barcode Enabled Antigen Mapping (BEAM) Workbook for BEAM-Ab Assembly (Document CG000597) to determine the volume of the antigen required for each assembly.

b. Target Antigen Assembly

Add reagents in the order listed. Pipette mix and maintain on ice in the dark.

BEAM Assembly	PN	For 1 BEAM-Ab Assembly (µl)
Sterile 1X PBS	-	Variable
BEAM Conjugate 1-16	2000774 - 2000789	2.0
*Biotinylated Antigen	-	Variable
Total	-	40.0

*This volume can be calculated using the Barcode Enabled Antigen Mapping (BEAM) Workbook for BEAM-Ab Assembly (Document CG000597). Add an appropriate volume of PBS based on the amount of added antigen to achieve the stated total volume. Link to TOC | 10xgenomics.com 21

c. Negative Control Assembly

Add reagents in the order listed. Pipette mix and maintain on ice. Use a unique BEAM Conjugate for negative control assembly.

BEAM Assembly	PN	For 1 BEAM-Ab Assembly (µl)
Sterile 1X PBS	-	38.0
BEAM Conjugate 1-16	2000774 - 2000789	2.0
Total	-	40.0

d. Incubate the assemblies for 30 min on ice in the dark.

- e. Add **5** µl Quenching Reagent to each assembly and pipette mix 5x.
- **f.** Incubate for **30 min** on **ice** in the dark or store the BEAM-Ab Assemblies for up to **24 h** at **4°C** in the dark.
- **g.** To minimize bubble formation, centrifuge the assemblies at **2,500 rcf** for **5 min** at **4**°**C** and keep the assemblies (**45 μl**) on ice in the dark.
- **h.** Pool each Target Antigen Assembly and Negative Control Assembly in a tube. Pipette mix and maintain on the ice in the dark. The volume of each BEAM-Ab Assembly for pooling will depend on the number of cells to be labeled in step 2.2. See the table below for guidance on appropriate volume to pool.

Number of Cells to be labeled in step 2.2	Total volume to prepare of each quenched BEAM-Ab Assembly (steps 2.1a-2.1g) (µl)	Volume of each BEAM-Ab Assembly for Pooling (step 2.1h) (µl)
200,000 - 1 x 10 ⁶		8
$1 \times 10^{6} - 2 \times 10^{6}$	90	16
$2 \times 10^{6} - 3 \times 10^{6}$		24
$3 \times 10^{6} - 4 \times 10^{6}$		32
$4 \times 10^{6} - 5 \times 10^{6}$		40
5 x 10 ⁶ - 6 x 10 ⁶		48
6 x 10 ⁶ - 7 x 10 ⁶		56
$7 \times 10^{6} - 8 \times 10^{6}$	-	64

8 μ l of the final quenched assembly is needed to label up to 1 x 10⁶ cells and thus the 45 μ l volume prepared at step 2.1g can be used to label up to 5 x 10⁶ cells, if needed. If working with more than 5 x 10⁶ cells, scale up the volume of each BEAM-Ab Assembly (see table above).

Record the BEAM Conjugate used to prepare the Negative Control Assembly.

Step 2.2: Sample Labeling

This protocol was demonstrated using $0.2-8 \times 10^6$ cells. For more than 8×10^6 cells, set up additional labeling reactions. Wash and thaw cells according to the appropriate 10x Genomics Demonstrated Protocol available on the 10x Genomics Support website.

- **a.** Prepare PBS + 2% FBS and keep on ice. This buffer can be prepared a day before the experiment.
- **b.** Prepare B cell antibody panel for flow sorting and keep on ice. See Appendix for some example panels.
- **c. Optional Step** Prepare Antibody Mix Supernatant for optional cell surface protein labeling and keep on ice.

	Prepare	
A S ((Antibody Mix Supernatant (containing antibody- oligonucleotide	• Add appropriate/manufacturer's recommended amount of antibody-oligonucleotide conjugates to a 1.5-ml microcentrifuge tube.
	conjugates) For optional cell surface	• If using a custom lyophillized antibody: Resuspend the antibody-oligonucleotide conjugates in an appropriate volume of PBS + 1% BSA.
	protein labeling	• Centrifuge the mix at 14,000 rcf for 10 min at 4°C.
		• Transfer the supernatant (containing Antibody Mix) to a new tube and maintain at 4°C.

- **d.** Dispense 0.2-8 x 10⁶ cells into a new 15-ml centrifuge tube.
- e. Centrifuge at **300 rcf** for **5 min** at **4°C**.
- f. Remove the supernatant.
- g. Resuspend pellet in 90 µl chilled PBS + 2% FBS and keep on ice.
- h. Add appropriate volume of human/mouse Fc Receptor Blocking Solution (10 μl for up to 1 x 10⁶ cells), pipette mix and incubate for 10 min on ice. If working with more than 1 x 10⁶ cells, scale up the volume of blocking solution accordingly.
- **i.** Add appropriate volume B cell antibody panel for flow sorting and optional Antibody Mix Supernatant to the cells.
- j. Add appropriate volume (7.2 μ l per assembly per 1 x 10⁶ cells) of pooled assembly from step 2.1h to the cells. For example, if the pool contains one Target Antigen Assembly and one Negative Control Assembly, 7.2 x 2 = 14.4 μ l of pooled assemblies should be added. Using a P1000 pipette, gently mix 5x.

The volume of the pooled assembly added will depend on the number of cells to be labeled. If working with more than 1×10^6 cells, scale up the volume as needed. For example, if the pool contains one Target Antigen Assembly and one Negative Control Assembly and if 2×10^6 cells will be labeled, $7.2 \times 4 = 28.8 \mu$ I of pooled assemblies should be added.

The Barcode Enabled Antigen Mapping (BEAM) Workbook for BEAM-Ab Assembly (Document CG000597) can also be used to calculate appropriate volumes for pooling.

- **k.** Incubate for **30 min** on **ice** in the dark. Gently pipette mix every 10 min.
- 1. Add **3.5 ml** chilled PBS + 2 % FBS. Gently pipette mix 5x.
- **m.** Centrifuge at **300 rcf** for **5 min** at **4°C**. Centrifugation speed and time depends upon the sample type.
- **n.** Remove the supernatant without disturbing the pellet.
- **o. Repeat** l-n 2x for a total three washes.
- p. Resuspend cells in appropriate volume chilled PBS + 2% FBS. Pipette mix 5x.
 Resuspension volume depends on the number of the cells. Resuspend in 100 µl for every 1 µ 106 cells lebeled. For every 106 lebeled.

in 100 μl for every 1 x 10° cells labeled. For example, for 8 x 10° labeled cells, resuspend pellet in 800 μl chilled PBS + 2% FBS.

- **q.** Add **1.0 µl** 7AAD per **200 µl** sample.
- **r.** Proceed **immediately** to flow sorting with appropriate settings.

Step 2.3: Flow Sorting

- **a.** Prepare PBS + 20% FBS for pre-coating the collection tubes.
- **b.** Prepare Collection Buffer for sorted cells and maintain the buffer on ice. See the table below for guidance on choosing the appropriate Collection Buffer. This table also provides guidance on the appropriate volume for collection and post-sorting steps.

PBS + 5% FBS20 µl for ≤5,000 cells≤147 cells/µlNoThis volume can be accommodated in 1 chip wellPBS + 5% FBS20 µl for ≤10,000 cells≤208 cells/µlNoThis volume must be loaded in 2 chip wellsPBS + 20% FBS20 µl for ≤20,000 cells≤263 cells/µlNoThis volume must be loaded in 2 chip wellsPBS + 20% FBS30 µl for 20,001- 50,000 cells232-294 cells/µlNoThis volume must be loaded in 4 chip wellsPBS + 20% FBS30 µl for 50,001- 500,000 cells-Recommended of a total 1.5 ml volume.After sorting, add additional cold PBS+20% FBS for a total 1.5 ml volume.100% FBS 500,00030 µl for more than 500,000-YesAfter sorting, add additional cold PBS+20% FBS for a total 1.5 ml volume.	Collection Buffer	Volume for # cells sorted	Expected cell conc. (confirm by counting)	Centrifugation to concentrate cells post-sorting?	Post-sorting notes
PBS + 5% FBS20 μl for ≤10,000 cells≤208 cells/μlNoThis volume must be loaded in 2 chip wellsPBS + 20% FBS20 μl for ≤20,000 cells≤263 cells/μlNoThis volume must be loaded in 2 chip wellsPBS + 20% FBS30 μl for 20,001- 50,000 cells232-294 cells/μlNoThis volume must be loaded in 4 chip wellsPBS + 20% FBS30 μl for 50,001- 50,000 cells-Recommended cells/μl• After sorting, add additional cold PBS+20% FBS for a total 1.5 ml volume.PBS + 20% FBS30 μl for 	PBS + 5% FBS	20 µl for ≤5,000 cells	≤147 cells/µl	No	This volume can be accommodated in 1 chip well
PBS + 20% FBS20 μl for ≤20,000 cells≤263 cells/μlNoThis volume must be loaded in 2 chip wellsPBS + 20% FBS30 μl for 20,001- 50,000 cells232-294 cells/μlNoThis volume must be loaded in 4 chip wellsPBS + 20% FBS30 μl for 	PBS + 5% FBS	20 µl for ≤10,000 cells	≤208 cells/µl	No	This volume must be loaded in 2 chip wells
PBS + 20% FBS30 μl for 20,001- 50,000 cells232-294 cells/μlNoThis volume must be loaded in 4 chip wellsPBS + 20% FBS30 μl for 	PBS + 20% FBS	20 µl for ≤20,000 cells	≤263 cells/µl	No	This volume must be loaded in 2 chip wells
PBS + 20% FBS30 μl for 50,001- 500,000 cells-Recommended• After sorting, add additional cold PBS+20% FBS for a total 1.5 ml volume.• Centrifuge at 150 rcf for 10 min at 4°C. 	PBS + 20% FBS	30 µl for 20,001- 50,000 cells	232-294 cells/µl	No	This volume must be loaded in 4 chip wells
 Centrifuge at 150 rcf for 10 min at 4°C. Count 100% FBS 30 µl for rore than solo cold PBS + 20% FBS for a total 1.5 ml volume. 	PBS + 20% FBS	30 µl for 50,001- 500,000 cells	-	Recommended	• After sorting, add additional cold PBS+20% FBS for a total 1.5 ml volume.
• Count 100% FBS 30 µl for - Yes • After sorting, add additional more than 500,000 · total 1.5 ml volume.					• Centrifuge at 150 rcf for 10 min at 4°C.
100% FBS 30 μl for - Yes • After sorting, add additional cold PBS+20% FBS for a total 1.5 ml volume.					• Count
• Centrifuge at 150 rcf for 10	100% FBS	30 µl for more than 500,000 sorted cells	-	Yes	 After sorting, add additional cold PBS+20% FBS for a total 1.5 ml volume. Centrifuge at 150 rcf for 10
min at 4°C.					min at 4°C.

Collection Buffers and Post-Sorting Guidance

- **c.** Pre-coat sorting collection tubes by adding **1 ml** PBS + 20% FBS to a tube then removing all of the PBS + 20% FBS.
- **d.** Add an appropriate Collection Buffer (see the table above) to the collection tube.
- e. Prepare appropriate compensation controls. Compensation controls should be prepared fresh for every flow sorting experiment. For further details, consult the Technical Note Barcode Enabled Antigen Mapping (BEAM) Flow Cytometry Guidelines (Document CG000598).
- **f.** Prepare fluorescence minus one (FMO) controls. See Appendix for details.
- **g.** Gate on lymphocytes by size (scatter), single cells, live cells (e.g. 7AAD negative), lineage negative, CD19⁺ cells and then sorting dual positive PE⁺ CD19⁺ cells.

When working with small numbers of cells (e.g., less than 50,000), expect poor (<75%) recovery of cells by centrifugation. **h.** Cells should be sorted using the purity mode on a low pressure setting (e.g. 100 μ M nozzle, etc). Keep cells on ice and in the dark prior to sorting. During sorting, the collection tube should be chilled. Place the sorted cells immediately on ice after sorting.

Consult the Technical Note Barcode Enabled Antigen Mapping (BEAM) Flow Cytometry Guidelines (Document CG000598) for details on gating strategy and other cell sorting best practices.

i. Determine cell concentration and viability using an automated cell counter or a hemocytometer. Cell counting can be skipped if the sorted cell numbers are expected to be low.

If necessary, the collected cells may be concentrated by centrifugation at 150 rcf for 10 min at 4°C and by removing the supernatant (see Collection Buffers and Post-Sorting Guidance table). Use of a longer centrifugation time is recommended post sorting.

j. Proceed **immediately** to the relevant Chromium Single Cell Immune Profiling Solutions User Guide with Feature Barcode technology (see References).

Barcode Enabled Antigen Mapping of Antigen-Specific TCRs (BEAM-T) Protocol:

Assembly, Labeling & Flow Sorting

Reagent Kits Protocol Steps & Timing Get Started Step 1: Pre-screen Peptides Step 2: Test Multiple Peptides Step 2.1: BEAM-T Assembly Preparation Step 2.2: Cell Labeling Step 2.3: Flow Sorting

Reagent Kits

Chromium Single Cell

PN-1000539

5' BEAM Core Kit, PE, Set A 128 rxns For use with the Chromium Next GEM Single Cell 5' Gene Expression with Feature Barcode technology for Barcode Enabled Antigen Mapping (BEAM)

Refer to SDS for handling and disposal information

Single Cell 5' BEAM Core K 128 rxns, Module 1 PN-1000539	it, P	E, Set A	Single Cell 5' BEAM Core Kit 128 rxns, Module 2 PN-1000539	, PE	, Set A
Store at -20°C	#	PN	Store at -20°C	#	PN
BEAM Conjugate 1, PE	1	2000774	BEAM Conjugate 9, PE	1	200078
BEAM Conjugate 2, PE	1	2000775	BEAM Conjugate 10, PE	1	200078
BEAM Conjugate 3, PE	1	2000776	BEAM Conjugate 11, PE	1	200078
BEAM Conjugate 4, PE	2	2000777	BEAM Conjugate 12, PE	2	200078
BEAM Conjugate 5, PE	1	2000778	BEAM Conjugate 13, PE	1	200078
BEAM Conjugate 6, PE	1	2000779	BEAM Conjugate 14, PE	1	200078
BEAM Conjugate 7, PE	1	2000780	BEAM Conjugate 15, PE	1	200078
BEAM Conjugate 8, PE	1	2000781	BEAM Conjugate 16, PE	1	200078
Quenching Reagent	1	2000790	Quenching Reagent	1	200079
		10x			10>

Cap colors for BEAM Conjugates 1-16 tubes may vary depending on the lot. Verify reagent using the part number.

Chromium Human MHC Class I A0201 Monomer Kit, 32 rxns PN-1000542

	dt 20 0	#	PN
	Monomer A0201	1	2000802
	Negative Control Peptide A0201	1	2000803
\bigcirc	Dilution Buffer	1	2000801

Chromium Human MHC Class I A1101 Monomer Kit, 32 rxns PN-1000543

Chromium Human MHC Class I A1: 32 rxns, PN-1000543	101 Mon	omer Kit
Store at -20°C	#	PN
Monomer A1101	1	2000804
 Negative Control Peptide A1101 	1	2000805
O Dilution Buffer	1	2000801
		10x

Chromium Human MHC Class I B0702 Monomer Kit, 32 rxns PN-1000544

Chromium Human MHC Class I B0702 Monomer Kit 32 rxns, PN-1000544				
Store at -20°C	#	PN		
Monomer B0702	1	2000806		
Negative Control Peptide B0702	1	2000807		
O Dilution Buffer	1	2000801		
		10×		

Chromium Human MHC Class I A2402 Monomer Kit, 32 rxns PN-1000545

Chromium Human MHC Class I A24 32 rxns, PN-1000543	02 Mon	omer Kit
Store at -20°C	#	PN
Monomer A2402	1	2000808
 Negative Control Peptide A2402 	1	2000809
O Dilution Buffer	1	2000801
		10×

Chromium Mouse MHC Class I H2Kb Monomer Kit, 32 rxns PN-1000546

Chromium Mouse MHC Class I H2Kb Monomer Kit 32 rxns, PN-1000546					
Store at -20°C	#	PN			
Monomer H2Kb	1	2000810			
 Negative Control Peptide H2Kb 	1	2000811			
O Dilution Buffer	1	2000801			
		10×			

Protocol Steps & Timing

The table below provides an overview of the Barcode Enabled Antigen Mapping of antigen-specific TCRs (BEAM-T) protocol steps and timing.

Days	Steps	Timing	Stop & Store
Day 1	Step 1. Pre-screen Peptides*		
	(Includes preparing unquenched BEAM-T Assembly, sample labeling, and flow cytometric analysis)	2-3 h	
Day 2	Pay 2 Step 2. Test Multiple Peptides		
	Step 2.1. BEAM-T Assembly Preparation	1 h	^{stop} 4°C ≤24 h
	Step 2.2. Sample Labeling	1 h	
	Step 2.3. Flow Sorting	2-3 h	

*Peptide pre-screening is required to determine the peptide quality and loading to monomers. This step can be skipped if the peptide is already pre-screened.

Keep samples on ice following sorting. Proceed **immediately** to the relevant Chromium Single Cell Immune Profiling Solutions User Guide with Feature Barcode technology (see References). **Get Started**

CG000595 | Rev A

Get Starteu		Item	10X PN	Preparation & Handling	Storage	
Cap colors for BEAM		Place on Ice				
Conjugates 1-16 tubes may vary depending on the lot. Verify reagent using the part number.	•	BEAM Conjugate 1-16, PE	2000774 - 2000789	Thaw at room temperature. Vortex, centrifuge briefly, pipette mix 5x (pipette set at 20 µl), and place on ice.	-20°C	
		Quenching Reagent	2000790	Thaw at room temperature. Vortex, verify no precipitate, and centrifuge briefly. Place on ice	-20°C	
	\bigcirc	Dilution Buffer	2000801	Thaw at room temperature. Vortex, verify no precipitate, and centrifuge briefly. Place on ice.	-20°C	
		Peptide Use appropriate, high- quality MHC monomer- matched peptide.	_	Thaw at room temperature and place on ice. Dilute to 110 µM using sterile PBS.	-20°C	
		Chromium Human MHC Class I A0201 Monomer Kit				
Choose appropriate MHC monomer kit depending on the target peptide.	•	Monomer A0201	2000802	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at 100 µl), and place on ice.	-20°C	
		Negative Control Peptide A0201	2000803	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at 480 µl), and place on ice.	-20°C	
		Chromium Human MHC Class I A1101 Monomer Kit				
		Monomer A1101	2000804	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at 100 µl), and place on ice.	-20°C	
		Negative Control Peptide A1101	2000805	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at 480 µl), and place on ice.	-20°C	
		Chromium Human MHC Class I B0702 Monomer Kit				
	•	Monomer B0702	2000806	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at 100 µl), and place on ice.	-20°C	
	•	Negative Control Peptide B0702	2000807	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at	-20°C	

BEAM-T

	Chromium Human MHC Class I A2402 Monomer Kit				
•	Monomer A2402	2000808	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at 100 µl), and place on ice.	-20°C	
•	Negative Control Peptide A2402	2000809	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at 480 µl), and place on ice.	-20°C	
	Chromium Mouse MHC Cl	lass I H2Kb Mo	onomer Kit		
•	Monomer H2Kb	2000810	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at 100 µl), and place on ice.	-20°C	
•	Negative Control Peptide H2Kb	2000811	Thaw at room temperature. Centrifuge briefly, pipette mix 5x (pipette set at 480 µl), and place on ice.	-20°C	
	T Cell Antibody Panel for Flow Sorting See Appendix	_	Manufacturer's recommendations.	4°C	
	7AAD (7-Aminoactinomycin D)	—	Manufacturer's recommendations.	4°C	
	Fc Receptor Blocking Solution Human/Mouse	—	Manufacturer's recommendations.	_	
	TotalSeq [™] -C Antibody Oligonucleotide Conjugates Optional For simultaneous cell surface protein labeling	_	Manufacturer's recommendations.	_	
	Obtain				
	Sterile 1X PBS	_	_	4°C	
	BSA Optional For preparing PBS + 1% BSA for resuspending lyophillized antibody-oligonucleotide conjugates	_	_	4°C	
	Vortex	—	_	—	
	FBS		Manufacturer's recommendations.	4°C	

BEAM-T

Peptide Dilution

Peptides working concentration should be 110 μ M. If required, sterile PBS can be used for dilution. If using lyophilized peptide, resuspend in DMSO to a stock concentration of 10 mM at room temperature, then dilute using sterile PBS to a working concentration of 110 μ M. Keep diluted peptide on ice during the assembly process. Unused peptide can be stored at -20°C.

Step 1: Pre-screen Peptides

Peptide Pre-screening

It is recommended to pre-screen each peptide before starting BEAM-T workflow to determine proper loading of the MHC monomer with the peptide. Improper MHC loading can alter PE signal during flow sorting.

This step only needs to be performed once. For peptides already screened, proceed to step 2.

Pre-screening does not require a positive signal and thus can be performed on non-experimental samples. For the purpose of prescreening the peptides, the following three unique BEAM-T Assemblies should be prepared:

- Target Peptide Assembly
- Negative Control Assembly
- Unloaded (Empty) Assembly

Assemblies can be prepared in a PCR 8-tube strip or a 1.5-ml microcentrifuge tube.

Perform all pipette mixing steps without introducing bubbles.

BEAM-T Assembly for Pre-screening Peptides

a. Target Peptide Assembly

i. Prepare Monomer-BEAM Conjugate Complex on ice in an appropriate tube. Add reagents in the order listed. Maintain on ice in the dark.

BEAM Conjugate & Monomer Complex		PN	1 BEAM-T Assembly (µl)
\bigcirc	Dilution Buffer Pipette mix 5x slowly before adding. Buffer is prone to bubble formation.	-	9.6
	BEAM Conjugate 1-16, PE	2000774-2000789	2.4
	Monomer Choose appropriate monomer	-	3.0
	Total	-	15.0

- ii. Pipette mix and dispense **10 µl** Monomer-BEAM Conjugate Complex into a tube. Keep the tubes on ice and in the dark.
- iii. Add **5 μl** of 110 μM appropriate target peptide to 10 μl Monomer-BEAM Conjugate Complex. Pipette mix 5 - 10x.

b. Negative Control Assembly

i. Prepare Monomer-BEAM Conjugate Complex on ice in an appropriate tube. Add reagents in the order listed. Maintain on ice.

BEAM Conjugate & Monomer Complex	PN	1 BEAM-T Assembly (μl)
O Dilution Buffer Pipette mix 5x slowly before adding. Buffer is prone to bubble formation.	-	9.6
BEAM Conjugate 1-16, PE	2000774-2000789	2.4
Monomer Choose appropriate monomer	-	3.0
Total	-	15.0

- ii. Pipette mix and dispense **10 µl** Monomer-BEAM Conjugate Complex into a tube. Keep the tube on ice and in the dark.
- iii. Add **5 μl** appropriate Negative Control Peptide to 10 μl Monomer-BEAM Conjugate Complex. Pipette mix 5 - 10x.

c. Unloaded (Empty) Assembly

i. Prepare Monomer-BEAM Conjugate Complex on ice in an appropriate tube. Add reagents in the order listed. Maintain on ice.

BEAM Conjugate & Monomer Complex	PN	1 BEAM-T Assembly (µl)
O Dilution Buffer Pipette mix 5x slowly before adding. Buffer is prone to bubble formation.	-	9.6
BEAM Conjugate 1-16, PE	2000774-2000789	2.4
Monomer Choose appropriate monomer	-	3.0
Total	-	15.0

- ii. Pipette mix and dispense **10 µl** Monomer-BEAM Conjugate Complex into a tube. Keep the tube on ice and in the dark.
- iii. Add **5 μl** PBS to 10 μl Monomer-BEAM Conjugate Complex. Pipette mix 5 10x.
- **d.** Incubate the assemblies for **30 min** on ice in the dark or store the BEAM-T Assemblies up to **24 h** at **4°C** in the dark.
- e. To minimize the bubble formation, centrifuge the assemblies at **2,500 rcf** for **5 min** at **4°C**.
- f. Place on ice in the dark and proceed **immediately** to the next step.

Sample Labeling & Flow Cytometry

This protocol was demonstrated using 0.2-1 x 10⁶ cells. Wash and thaw cells according to the appropriate 10x Genomics Demonstrated Protocol available on the 10x Genomics Support website.

- **a.** Prepare PBS + 2% FBS and keep on ice.
- **b.** Prepare T cell antibody panel at appropriate dilution and keep on ice. See Appendix for examples panels for human and mouse.
- **c.** Dispense 0.2-1 x 10⁶ cells each into a new 15-ml centrifuge tube for each Target Peptide Assembly, Negative Control Assembly, and Unloaded (Empty) Assembly.
- d. Centrifuge cells at **300 rcf** for **5 min** at **4°C**.
- e. Remove the supernatant.
- **f.** Resuspend each pellet in **90 µl** chilled PBS + 2% FBS and keep on ice.
- **g.** Add **10 μl** human/mouse Fc Receptor Blocking Solution to each tube, mix and incubate for **10 min** on ice.
- **h.** Add the entire volume (~**15 μl)** of appropriate BEAM-T Assembly to the cells and label the tubes accordingly. Using a P1000 pipette, gently mix 5x.

- i. Incubate for 15 min on ice in the dark.
- **j.** Add appropriate volume of T cell antibody panel for flow cytometry to the cells and pipette mix. See Appendix for example panels.
- **k.** Incubate for **30 min** on ice in the dark and gently pipette mix cells every 10 min.
- 1. Add **3.5 ml** chilled PBS + 2 % FBS. Gently pipette mix 5x.
- m. Centrifuge at **300 rcf** for **5 min** at **4°C**.
- **n.** Remove the supernatant.
- **o.** Repeat l n 2x for a total of three washes.
- **p.** Resuspend cells in **100 µl** chilled PBS + 2% FBS. Pipette mix 5x.
- q. Add 0.5 µl 7AAD per 100 µl sample.
- r. Maintain sample on ice in dark and proceed to flow cytometry.

Flow Cytometry

- **a.** Prepare appropriate compensation controls. Compensation controls should be prepared fresh for every flow sorting experiment. For further details, consult Technical Note Barcode Enabled Antigen Mapping (BEAM) Flow Cytometry Guidelines (Document CG000598).
- **b.** Prepare fluorescence minus one (FMO) controls. See Appendix for details.
- **c.** Gate on lymphocytes by size (scatter), single cells, live cells (e.g. 7AAD negative), lineage negative, CD8⁺ cells, and then analyze dual positive PE⁺ CD8⁺ cells.
- **d.** Analyze the results and proceed with step 2 if the peptide passes the pre-screening. See Appendix for Peptide Pre-screening Analysis for BEAM-T.

Step 2: Test Multiple Peptides

Step 2.1: BEAM-T Assembly Preparation This section provides guidance on testing multiple peptides in a sample. A downloadable workbook (Barcode Enabled Antigen Mapping (BEAM) Workbook for BEAM-T Assembly, Document CG000615) for the calculations described in this section is also available on the 10x Genomics Support website and can be used concurrently with this User Guide.

For the purpose of testing multiple peptides, the following two types of BEAM-T Assemblies should be prepared:

- i. One or more Target Peptide Assembly
- ii. Negative Control Assembly

BEAM-T Assembly Volume

Each final quenched BEAM-T Assembly is 30 μ l and is sufficient to label up to 1 x 10⁶ cells (200,000 to 1 x 10⁶). To label more than 1 x 10⁶, the final volume of the BEAM assemblies will need to be scaled.

Number of Cells	Volume of each BEAM-T Assembly (µl)
200,000 - 1 x 10 ⁶	30
$1 \times 10^{6} - 2 \times 10^{6}$	60
$2 \times 10^{6} - 3 \times 10^{6}$	90
$3 \times 10^{6} - 4 \times 10^{6}$	120
$4 \times 10^{6} - 5 \times 10^{6}$	150
$5 \times 10^{6} - 6 \times 10^{6}$	180
6 x 10 ⁶ - 7 x 10 ⁶	210
$7 \times 10^6 - 8 \times 10^6$	240

Each of the BEAM Conjugate provided is sufficient to label up to 8×10^6 cells. If working with >8 $\times 10^6$ cells, the same peptide can be assembled on a different BEAM Conjugate.

BEAM-T Assembly Setup Examples

The figures below provide some possible BEAM-T assembly setup examples when starting with 1×10^6 and 2×10^6 cells. Note that the final volume of each unique assembly is scaled up when labeling more than 1×10^6 cells (examples 2 and 4).

For testing 15 target peptides in a sample containing 1×10^6 cells, 16 unique BEAM-T Assemblies (includes one negative control reaction), each containing a unique BEAM Conjugate and a unique peptide, would be needed. In this case, each assembly would have a final volume of 30 µl. If the number of cells is more than 1×10^6 cells, the volume of each BEAM-T Assembly should be scaled up accordingly. See BEAM-T Assembly Volume table on the previous page.

Assemblies can be prepared in a PCR 8-tube strip or a 1.5-ml microcentrifuge tube.

a. Target Peptide Assembly

i. Prepare Monomer-BEAM Conjugate Complex on ice in an appropriate tube and pipette mix. Add reagents in the order listed.

BEAM Conjugate & Monomer Complex		PN	1 BEAM-T Assembly (µl)	
0	Dilution Buffer Pipette mix 5x slowly before adding. Buffer is prone to bubble formation.	-	9.6	
	BEAM Conjugate 1-16, PE	2000774-2000789	2.4	
	Monomer Choose appropriate monomer	-	3.0	
	Total	-	15.0	

Barcode Enabled Antigen Mapping (BEAM) Workbook for BEAM-T Assembly (Document CG000615) can also be used for calculations relevant to creating multiple BEAM-T Assemblies.

- ii. Pipette mix and dispense **10 µl** Monomer-BEAM Conjugate Complex into a tube. Keep the tubes on ice and in the dark.
- iii. Add **5 μl** of 110 μM appropriate target peptide to 10 μl Monomer-BEAM Conjugate Complex. Pipette mix 5 - 10x.

b. Negative Control Assembly

i. Prepare Monomer-BEAM Conjugate Complex on ice in an appropriate tube and pipette mix. Add reagents in the order listed.

BEAM Conjugate & Monomer Complex		PN	1 BEAM-T Assembly (µl)
\bigcirc	Dilution Buffer Pipette mix 5x slowly before adding. Buffer is prone to bubble formation.	-	9.6
	BEAM Conjugate 1-16, PE	2000774-2000789	2.4
	Monomer Choose appropriate monomer	-	3.0
	Total	-	15.0

- ii. Pipette mix and dispense **10 µl** Monomer-BEAM Conjugate Complex into a tube. Keep the tube on ice and in the dark.
- iii. Add **5 µl** appropriate Negative Control Peptide. Pipette mix 5 10x.

c. Incubate for **30 min** on ice in the dark or store the BEAM-T Assemblies up to **24 h** at **4°C** in the dark.

Quenching Mix Add reagents in the ord listed. Maintain on ice.	_{er} PN	1 BEAM-T Assembly (µl)	4 BEAM-T Assemblies (μl)	8 BEAM-T Assemblies (µl)
Quenching Reagent	2000790	6.0	24.0	48.0
Negative Control Peptide Use appropriate MHC-matched Negative Control Peptide	-	9.0	36.0	72.0
Total	-	15.0	60.0	120.0

d. Prepare Quenching Mix 5-10 min before using.

Barcode Enabled Antigen Mapping (BEAM) Workbook for BEAM-T Assembly (Document CG000615) can also be used for calculations relevant to multiple BEAM-T Assemblies.

- e. Add **15 µl** Quenching Mix to each tube containing BEAM-T Assembly (negative control as well as target peptides).
- f. Pipette mix 10x and incubate for 15 min on ice in the dark.
- **g.** To minimize the bubble formation, centrifuge the quenched assemblies at **2,500 rcf** for **5 min** at **4°C**.
- Pool the entire volume (~30 µl per assembly per 1 x 10⁶ cells) of each unique Target Peptide Assembly (if working with more than one peptide) and entire volume (~30 µl per 1 x 10⁶ cells) of the Negative Control Peptide Assembly in a tube. Pipette mix and maintain at 4°C in dark.

 $30 \ \mu l$ of the final quenched assembly is needed to label 1×10^6 cells. If working with more than 1×10^6 cells, scaled up volume of each BEAM-T Assembly will be needed for pooling. See BEAM-T Assembly Volume table.

i. Immediately proceed to step 2.2 Sample Labeling.

Step 2.2: Sample Labeling This protocol was demonstrated using $0.2-8 \times 10^6$ cells. For more than 8×10^6 cells, set up additional labeling reactions. Wash and thaw cells according to the appropriate 10x Genomics Demonstrated Protocol available on the 10x Genomics Support website.

- **a.** Prepare PBS + 2% FBS and keep on ice. This buffer can be prepared a day before the experiment.
- **b.** Prepare T cell antibody panel at appropriate dilution and keep on ice. See Appendix for some examples panels.
- **c. Optional Step** Prepare optional Antibody Mix Supernatant for optional cell surface protein labeling and keep on ice.

	Prepare	
	Antibody Mix Supernatant (containing antibody- oligonucleotide	• Add appropriate/manufacturer's recommended amount of antibody-oligonucleotide conjugates to a 1.5-ml microcentrifuge tube.
conjugates) For optional cell s protein labeling	conjugates) For optional cell surface	• If using a custom lyophillized antibody: Resuspend the antibody-oligonucleotide conjugates in an appropriate volume of PBS + 1% BSA.
	protein labeling	- Centrifuge the mix at 14,000 rcf for 10 min at 4°C.
		• Transfer the supernatant (containing Antibody Mix) to a new tube and maintain at 4°C.

- **d.** Dispense 0.2-8 x 10⁶ cells into a new 15-ml centrifuge tube.
- e. Centrifuge at **300 rcf** for **5 min** at **4°C**.
- f. Remove the supernatant.
- **g.** Resuspend pellet in **90 µl** chilled PBS + 2% FBS and keep on ice.
- **h.** Add appropriate volume of human/mouse Fc Receptor Blocking Solution (10 μl for up to 1 x 10⁶ cells), pipette mix, and incubate for **10 min** on ice. If working with more than 1 x 10⁶ cells, scale up the volume of blocking solution accordingly.
- i. Add the entire volume of pooled assemblies from step 2.1 to the cells. Using a P1000 pipette, gently mix 5x.
- j. Incubate for **15 min** at **4°C** in the dark.
- **k.** Add appropriate volume of T cell antibody panel for flow sorting (and Antibody Mix Supernatant, if applicable) to the cells directly and pipette mix.
- 1. Incubate for **30 min** at **4°C** in the dark and gently pipette mix cells every 10 min.
- **m.** Add **3.5 ml** chilled PBS + 2 % FBS. Gently pipette mix 5x.
- n. Centrifuge at **300 rcf** for **5 min** at **4°C**.

- o. Remove the supernatant.
- **p. Repeat** m o 2x for a total of three washes.
- **q.** Resuspend cells in appropriate volume chilled PBS + 2% FBS. Pipette mix 5x.

Resuspension volume depends on the number of the cells. Resuspend in 100 μ l for every 1 x 10⁶ cells labeled. For example, for 8 x 10⁶ labeled cells, resuspend pellet in 800 μ l chilled PBS + 2% FBS.

- **r.** Add **1.0 µl** 7AAD per **200 µl** sample.
- **s.** Maintain sample on ice in the dark and proceed **immediately** to flow sorting with appropriate settings.

Step 2.3: Flow Sorting

- **a.** Prepare PBS + 20% FBS for pre-coating the collection tubes.
- **b.** Prepare Collection Buffer for sorted cells and maintain the buffer on ice.

See the table below for guidance on choosing the appropriate Collection Buffer. This table also provides guidance on the appropriate volume for collection and post-sorting steps.

Collection Buffer	Volume for # cells sorted	Expected cell conc. (confirm by counting)	Centrifugation to concentrate cells post-sorting?	Post-sorting notes
PBS + 5% FBS	20 µl for ≤5,000 cells	≤147 cells/µl	No	This volume can be accommodated in 1 chip well
PBS + 5% FBS	20 µl for ≤10,000 cells	≤208 cells/µl	No	This volume must be loaded in 2 chip wells
PBS + 20% FBS	20 µl for ≤20,000 cells	≤263 cells/µl	No	This volume must be loaded in 2 chip wells
PBS + 20% FBS	30 µl for 20,001- 50,000 cells	232-294 cells/µl	No	This volume must be loaded in 4 chip wells
PBS + 20% FBS	30 µl for 50,001- 500,000 cells	-	Recommended	 After sorting, add additional cold PBS+20% FBS for a total 1.5 ml volume. Centrifuge at 150 rcf for 10 min at 4°C. Count
100% FBS	30 µl for more than 500,000 sorted cells	-	Yes	 After sorting, add additional cold PBS+20% FBS for a total 1.5 ml volume. Centrifuge at 150 rcf for 10 min at 4°C. Count

Collection Buffers and Post-Sorting Guidance

When working with small numbers of cells (e.g., less than 50,000), expect poor (<75%) recovery of cells by centrifugation.

- **c.** Pre-coat sorting collection tubes by adding **1 ml** PBS + 20% FBS to a tube then removing all of the PBS + 20% FBS.
- **d.** Add an appropriate Collection Buffer (see the table above) to the collection tube.
- e. Prepare appropriate compensation controls. Compensation controls should be prepared fresh for every flow sorting experiment. For further details, consult the Technical Note Barcode Enabled Antigen Mapping (BEAM) Flow Cytometry Guidelines (Document CG000598).
- **f.** Prepare fluorescence minus one (FMO) controls. See Appendix for details.
- **g.** Gate on lymphocytes by size (scatter), single cells, live cells (e.g. 7AAD negative), lineage negative, CD8⁺ cells, and then sorting dual positive PE⁺ CD8⁺ cells.

h. Cells should be sorted using the purity mode on a low pressure setting (e.g. 100 µM nozzle, etc). Keep cells on ice and in the dark prior to sorting. During sorting, the collection tube should be chilled. Place the sorted cells immediately on ice after sorting.

Consult the Technical Note Barcode Enabled Antigen Mapping (BEAM) Flow Cytometry Guidelines (Document CG000598) for details on gating strategy and other cell sorting best practices.

i. Determine the cell concentration and viability using an automated cell counter or a hemocytometer. Cell counting can be skipped if the sorted cell numbers are expected to be low.

If necessary, the collected cells may be concentrated by centrifugation at 150 rcf for 10 min at 4°C and by removing the supernatant (see Collection Buffers and Post-Sorting Guidance table). Use of a longer centrifugation time is recommended post sorting.

j. Proceed immediately to the relevant Chromium Single Cell Immune Profiling Solutions User Guide with Feature Barcode technology (see References).

CG000595 | Rev A

Appendix

- A1. Antigen Pre-screening Analysis for BEAM-Ab
- A2. Peptide Pre-screening Analysis for BEAM-T
- A3. BEAM-Ab Antibody Panels for Flow Sorting
- A4. BEAM-T Antibody Panels for Flow Sorting
- A5. FMO Controls
- A6. References

A1. Antigen Pre-screening Analysis for BEAM-Ab

The flow plots are representative. The gates shown here are specific to the sorter settings and the sample used in that experiment and can vary between experiments. Absolute values may vary depending upon sorter setting and the sample used. **a.** Run the Negative Control Assembly through the flow cytometer to establish a region that can be used to identify and gate for positive cells.

Figure A. Sample labeled with Negative Control Assembly.

b. Next, run each Target Antigen Assembly and use the same gating scheme as the Negative Control Assembly. See examples below:

Figure B. A low quality antigen in a sample containing no or few target positive cells might show a shift of the whole population to the right.

Figure C. A good quality antigen in a sample containing no or few target positive cells will look very similar to the Negative Control Assembly flow plot as above.

The plots show PE intensity of CD19⁺ cells

A2. Peptide Pre-screening Analysis for BEAM-T

The flow plots are representative. The gates shown here are specific to the sorter settings and the sample used in that experiment and can vary between experiments. Absolute values may vary depending up on the sorter setting and the sample used. **a.** Run the Negative Control Assembly through the flow cytometer to establish a region that can be used to identify and gate for positive cells.

Figure A. Sample labeled with a Negative Control Assembly.

b. Next, run the Unloaded (Empty) Assembly and use the same gating scheme as the Negative Control Peptide Assembly.

Figure B. Sample labeled with an Unloaded (Empty) Assembly.

c. Finally, run each Target Peptide Assembly. Use the same gating scheme as the Negative Control Assembly and compare with the unloaded assembly. See examples below:

Figure C. Example of a poorly loaded peptide in a sample containing no target positive cells. The sample might show a shift of the whole population to the right and will appear similar to the Unloaded (Empty) Assembly.

Figure D. Example of a properly loaded peptide in a sample containing no target positive cells. Sample will appear very similar to the negative control flow plot as above.

Figure E. Example of a properly loaded peptide in a sample containing known target positive cells. In this case, the center of the negative population is similar to the negative control above.

The plots show PE intensity of CD8⁺ cells

CG000595 | Rev A

A3. BEAM-Ab Antibody Panels for Flow Sorting

The following tables provide example panels for flow sorting human and mouse B cells. The purpose is to sort lymphocytes > single cells > live cells (7AAD negative) > lineage negative > $CD19^+$ > dual $CD19^+PE^+$ cells.

Example Human B Cell Antibody Panel for Flow Sorting

Marker	Target Cell Type	Antibody	Vendor	Part Number (US)
CD19 (+)	B cells	PE/Cyanine7 anti-human CD19 Antibody	Biolegend	302215
CD56 (-)	Natural killer cells	Brilliant Violet 421 anti- human CD56 (NCAM) Antibody	Biolegend	318327
CD3 (-)	T cells	Brilliant Violet 421 anti- human CD3 Antibody	Biolegend	317344
CD14 (-)	Monocytes	Brilliant Violet 421 anti- human CD14 Antibody	Biolegend	367143
*7AAD (-)	Live dead marker	Invitrogen eBioscience 7-AAD Viability Staining Solution	Invitrogen	00699350

Example Mouse B Cell Antibody Panel for Flow Sorting

Marker	Target Cell Type	Antibody	Vendor	Part Number (US)
CD19 (+)	B cells	PE/Cyanine7 anti-mouse CD19 Antibody	Biolegend	115519
Ter119 (-)	Erythroid cells	Brilliant Violet 421 anti- mouse TER-119/Erythroid Cells Antibody	Biolegend	116233
Ly6g (-)	Myeloid cells	Brilliant Violet 421 anti- mouse Ly-6G/Ly-6C (Gr-1) Antibody	Biolegend	108433
CD3 (-)	T cells	Brilliant Violet 421 anti- mouse CD3 Antibody	Biolegend	100227
CD14 (-)	Dendritic cells	Brilliant Violet 421 anti- mouse CD14 Antibody	Biolegend	123329
*7AAD (-)	Live dead marker	Invitrogen eBioscience 7-AAD Viability Staining Solution	Invitrogen	00699350

*7AAD is added separately just before flow sorting.

Refer to the manufacturer's website for regional part numbers. Same antibodies can also be used when performing pre-screening.

A4. BEAM-T Antibody Panels for Flow Sorting

The following tables provide example panels for flow sorting human and mouse T cells. The purpose is to sort lymphocytes > single cells > live cells (7AAD negative) > lineage negative⁻ > $CD8^+$ > dual $CD8^+PE^+$ cells.

Example Human T Cell Antibody Panel for Flow Sorting

Marker	Target Cell Type	Antibody	Vendor	Part Number (US)
CD3 (+)	Total T cells	Brilliant Violet 510 anti- human CD3 Antibody	Biolegend	317331
CD8 (+)	Cytotoxic T cells	Alexa Fluor 488 anti-human CD8 Antibody	Biolegend	344716
CD56 (-)	Natural killer cells	Brilliant Violet 421 anti- human CD56 (NCAM) Antibody	Biolegend	318327
*7AAD (-)	Live dead marker	Invitrogen eBioscience 7-AAD Viability Staining Solution	Invitrogen	00699350

Example Mouse T Cell Flow Antibody Panel for Flow Sorting

Marker	Target Cell Type	Antibody	Vendor	Part Number (US)
CD3 (+)	Total T cells	Brilliant Violet 510 anti- mouse CD3 Antibody	Biolegend	100233
CD8 (+)	Cytotoxic T cells	FITC anti-Mouse CD8a Antibody	BD Bioscience	553030
Ter119 (-)	Erythroid cells	Brilliant Violet 421 anti- mouse TER-119/Erythroid Cells Antibody	Biolegend	116233
Ly6g (-)	Myeloid cells	Brilliant Violet 421 anti- mouse Ly-6G/Ly-6C (Gr-1) Antibody	Biolegend	108433
CD19 (-)	B cells	Brilliant Violet 421 anti- mouse CD19 Antibody	Biolegend	115537
CD14 (-)	Dendritic cells	Brilliant Violet 421 anti- mouse CD14 Antibody	Biolegend	123329
*7AAD (-)	Live dead marker	Invitrogen eBioscience 7-AAD Viability Staining Solution	Invitrogen	00699350

*7AAD is added separately just before flow sorting.

Refer to the manufacturer's website for regional part numbers. Same antibodies can also be used when performing pre-screening.

CG000595 | Rev A

A5. FMO Controls

This section provides guidance on preparing FMO controls for Barcode Enabled Antigen Mapping of antigen-specific BCRs (BEAM-Ab) and antigen-specific TCRs (BEAM-T) protocols.

FMO control should be prepared fresh for every flow sorting experiment. Cells should be labeled with the antibody panel and live dead marker but not the BEAM assembly. If enough cells from the experimental sample are not available, cells from a non-experimental sample can be used.

- a. Dispense 100,000 cells into a new 1.5-ml microcentrifuge tube
- **b.** Centrifuge at **300 rcf** for **5 min** at **4°C**.
- c. Remove the supernatant.
- d. Resuspend pellet in 90 µl chilled PBS + 2% FBS and keep on ice.
- e. Add **10 μl** human/mouse Fc Receptor Blocking Solution and incubate for **10 min** on ice
- **f.** Add appropriate volume of B/T cell antibody panel to the cells.
- g. Incubate for **30 min** on ice in the dark.
- h. Add 3.5 ml chilled PBS + 2% FBS. Gently pipette mix 5x.
- i. Centrifuge at **300 rcf** for **5 min** at **4°C**.
- **j.** Remove the supernatant.
- **k. Repeat** h-j one more time for a total of two washes.
- **1.** Resuspend cells in **100 µl** chilled PBS + 2% FBS. Pipette mix 5x.
- m. Add 0.5 µl 7AAD (live dead marker) per 100 µl sample.
- **n.** Maintain sample on ice in dark and proceed immediately to flow sorting

A6. References

Chromium Single Cell Immune Profiling Solutions User Guides with Feature Barcode technology:

If the cells were also labeled with antibody-oligonucleotide conjugates:

• Chromium Next GEM Single Cell 5' v2 (Dual Index) Reagent Kits with Feature Barcode technology for Barcode Enabled Antigen Mapping (BEAM) and Cell Surface Protein User Guide (CG000592).

If the cells were not labeled with antibody-oligonucleotide conjugates:

 Chromium Next GEM Single Cell 5' v2 (Dual Index) Reagent Kits with Feature Barcode technology for Barcode Enabled Antigen Mapping (BEAM) User Guide (CG000591).